Круговорот веществ и энергии в природе. Потоки энергии и вещества в экосистемах Круговорот веществ и поток энергии в природе

Определение 1

Энергия представляет собой комплексную меру движения и взаимодействия всех видов материй.

В отличие от веществ, которые могут циркулировать на разных блоках биосферы , использоваться повторно и формировать круговороты, энергия представляет собой постоянный однонаправленный поток. В таких потоках энергия может превращаться из одной формы в другую до тех пор, пока не рассеется в космическом пространстве в виде тепла.

Всю биосферу можно расценивать в качестве единого пространственного образования способного к поглощению энергии из космического пространства и направлению её на внутреннюю работу.

Живые организмы являются основными потребителями и преобразователями энергии в биосфере. Так, например, продуценты преобразуют свободную лучистую энергию в химически связанную, которая в дальнейшем переходит от одних биосферных структур к другим. Каждый переход энергии сопровождается её превращением в тепло и рассеиванием в окружающей среде. При передаче энергии от продуцентов к консументам первого порядка эффективность переноса составляет всего 10%.

Более эффективным является перенос энергии от консументов первого к консументам второго порядка - 20%. Завершается поток энергии на редуцентах за счёт которых энергия либо окончательно рассеивается в виде тепла, либо аккумулируется в мертвой органике.

Круговороты веществ в биосфере

  • большой биологический (характерной особенностью большого круговорота веществ является его преимущественно горизонтальное направление. Осуществляется он исключительно между сушей и морем, как например, круговорот воды);
  • малый биологический (преимущественно вертикальным направлением миграции обладает биологический круговорот, осуществляемый между растениями и почвой);
  • химический (миграция веществ в химическом круговороте определяется двумя тесно связанными и взаимообусловленными процессами, противостоящими друг другу. Он представляет собой синтез зелеными растениями живого вещества из элементов неживой природы за счёт солнечной энергии и минерализации детрита, вследствие чего и выделяется энергия).

Замечание 1

Образование живого вещества и его разложение представляют собой две стороны единого процессы, называемого биологическим круговоротом химических элементов. Основной состав живой материи зависит от тех химических элементов, которые пребывают в биосфере в газообразном состоянии, вследствие чего органический мир живых организмов связан с круговоротом газов на Земле.

Биосферные геохимические процессы

Как известно, Земная кора насчитывает более $100$ химических элементов, однако только $6$ из них взаимодействуют в атмосфере : водород $(H)$, кислород $(O)$, азот $(N)$, углерод $(C)$, фосфор $(P)$ и сера $(S)$. Таким образом, в биосферных геохимических процессах принимают участие наиболее реакционноспособные элементы. Первые 4 из них образуют практически всю массу наземных растений, включающих около $99\%$ всего живого вещества на Земле.

Биосферные биохимические процессы

Биохимические циклы ежегодно приводят в движение около $500$ млрд. т вещества, исключительно движимой силой которых являются процессы фотосинтеза. Кроме $C$, $H$, $O$ и $N$ организмы используют зольные элементы - $Ca$, $K$ и т.д., а также макроэлементы - $Zn$, $Mo$ и т.д., круговорот которых на планете происходит за счёт циклического превращения веществ и изменения потоков энергии благодаря совместному действию биотической и абиотической трансформации живого вещества.

Вывод

Таким образом, круговорот веществ в биосфере осуществляют не определенные вещества, а лишь определенные элементы, принимающие участие в процессах, осуществляемых а различных слоях атмо-, гидро- и литосферы.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Круговорот веществ и энергии в природе

Круговорот веществ - это повторяющиеся процессы превращения и перемещения вещества в природе, имеющие более или менее цикличный характер. Все вещества на нашей планете находятся в процессе круговорота. В природе имеется два основных круговорота Большой (геологический) Малый (биогеохимический)

Большой круговорот веществ Большой круговорот длится миллионы лет, обусловлен взаимодействием солнечной энергии с глубинной энергией Земли. Связан с геологическими процессами, образованием и разрушением горных пород и последующим перемещением продуктов разрушения.

Малый круговорот веществ Малый круговорот (биогеохимический) совершается в пределах биосферы, на уровне биоценоза. Сущность его – в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Биогеохимические циклы – Вернадский В.И.

Круговорот воды Тр сток инф Испарение воды Конденсация паров Выпадение осадков сток Транспирация инфильтрация

Транспирация - процесс движения воды через растение и её испарение через наружные органы растения, такие как листья, стебли и цветы. Вода необходима для жизнедеятельности растения, но только небольшая часть воды, поступающей через корни используется непосредственно для нужд роста и метаболизма.

Круговорот воды

Круговорот воды Основная часть воды сосредоточена в океанах. Вода, испаряясь с их поверхности, снабжает естественные и искусственные экосистемы суши. Чем ближе район к океану, тем больше там выпадает осадков. Суша постоянно возвращает воду океану: часть влаги испаряется, активнее всего в лесах, часть собирают реки: в них поступают дождевые и талые воды. Обмен влагой между океаном и сушей требует очень больших энергетических затрат: на это расходуется примерно 30% поступающей на Землю солнечной энергии.

Влияние человека на круговорот воды Круговорот воды в биосфере до развития цивилизации был равновесным, т.е. океан получал от рек столько воды, сколько расходовал ее при испарении. С развитием цивилизации этот круговорот стал нарушаться. В частности, леса испаряют все меньше воды, т.к. их площадь сокращается, а поверхность почвы, наоборот все больше, т.к. увеличивается площадь орошаемых сельхоз. угодий. Обмелели реки южных районов. Вода хуже испаряется с поверхности океана, т.к. значительная её часть покрыта пленкой нефти. Все это ухудшает водоснабжение биосферы.

Более частыми становятся засухи, возникают очаги экологических бедствий. Например, более 35 лет длится катастрофическая засуха в Африке, в зоне Сахеля – полупустынной области, отделяющей Сахару от северных стран континента. Пресная вода, которая возвращается в океан и другие водоемы с суши, часто загрязнена. Практически непригодной для питья стала вода многих рек России. Доля пресной воды, доступной живым организмам, довольно мала, поэтому её нужно расходовать экономно и не загрязнять! Каждый четвертый житель планеты испытывает недостаток в чистой питьевой воде. Во многих районах мира не хватает воды для промышленного производства и орошения.

Разные составляющие гидросферы участвуют в круговороте воды по-разному и с разной скоростью. Для полного обновления воды в составе ледников необходимо 8000 лет, подземных вод – 5000 лет, океана – 3000 лет, почвы – 1 год. Пары атмосферы и речные воды полностью обновляются за 10 – 12 суток. Круговорот воды в природе занимает около 1 млн. лет.

Круговорот кислорода Кислород входит в состав самых распространенных элементов в биосфере. Содержание кислорода в атмосфере почти 21%. Кислород входит в состав молекул воды, в состав живых организмов (белки, жиры, углеводы, нуклеиновые кислоты). Кислород производится продуцентами (зелеными растениями). Важное место в круговороте кислорода занимает озон. Озоновый слой находится на высоте 20-30 км над уровнем моря. На содержание кислорода в атмосфере влияют 2 основных процесса: 1) фотосинтез 2) разложение органического вещества, при котором он расходуется.

Круговорот кислорода – замедленный процесс. Для полного обновления всего кислорода в атмосфере требуется около 2000 лет. Для сравнения: полное обновление углекислого газа в атмосфере происходит примерно за 3 года. Кислород расходуется для дыхания большинства живых организмов. Кислород используется при сжигании горючего в ДВС, в топках ТЭС, в двигателях самолетов и ракет и т.д. Дополнительное антропогенное расходование может нарушить равновесие круговорота кислорода. Пока биосфера компенсирует вмешательство человека: потери восполняются зелеными растениями. При дальнейшем уменьшении площади лесов и сжигании всё большего количества топлива содержание кислорода в атмосфере начнет сокращаться.

ЭТО ВАЖНО!!! При снижении содержания кислорода в воздухе до 16% у человека ухудшается самочувствие (в особенности страдает сердце), до 7% - человек теряет сознание, до 3% - наступает смерть.

Круговорот углерода

Круговорот углерода Углерод – основа органических соединений, он входит в состав всех живых организмов в виде белков, жиров, углеводов. В атмосферу углерод поступает в виде углекислого газа. В атмосфере, где сконцентрирована основная масса углекислого газа, постоянно происходит обмен: растения поглощают углекислый газ при фотосинтезе, а все организмы выделяют его при дыхании. До 50% углерода в виде СО 2 возвращают в атмосферу редуценты – микроорганизмы почвы. Углерод выходит из круговорота в виде карбоната кальция.

Влияние человека на круговорот углерода Техногенная деятельность человека нарушает естественный баланс круговорота углерода: 1)при сгорании органического топлива ежегодно в атмосферу выбрасывается около 6 млрд. т СО 2: а) Производство электроэнергии на ТЭЦ б) Выхлопные газы автомобилей 2)уничтожение лесов. В течение последних 100 лет содержание углекислого газа в атмосфере неуклонно и быстро растет. Углекислый газ + метан + пары воды + озон + оксиды азота = парниковый газ. В результате – парниковый эффект – глобальное потепление, которое может привести к масштабным стихийным бедствиям.

Круговорот азота В свободной форме азот является составной частью воздуха – 78 % . Азот- один из самых важных элементов для жизнедеятельности организмов. Азот входит в состав всех белков. Молекула азота очень прочная, по этой причине большинство организмов не способно усваивать атмосферный азот. Живыми организмами азот усваивается только в форме соединений с водородом и кислородом. Фиксация азота в химические соединения происходит в результате вулканической и грозовой деятельности, но большей частью – в результате деятельности микроорганизмов – фиксаторов азота (азотфиксирующие бактерии и сине-зеленые водоросли).

Азот поступает к корням растений в форме нитратов, которые используются для синтеза органики (белков). Животные потребляют азот с растительной или животной пищей. Возврат азота в атмосферу происходит в результате разрушения отмершего органического материала. Бактерии почвы разлагают белки до неорганических веществ – газов - аммиак, оксиды азота, которые поступают в атмосферу. Попавший в водоемы азот также проходит по пищевым цепям «растение – животное – микроорганизмы» и возвращается в атмосферу.

Воздействие человека на круговорот азота Техногенная деятельность человека нарушает естественный баланс круговорота азота. При распашке земель почти в 5 раз снижается активность микроорганизмов – фиксаторов азота, поэтому снижается содержание азота в почве, что приводит к снижению плодородия почвы. Поэтому человек вносит в почву избыток нитратов, входящих в минеральные удобрения. Большое количество оксидов азота поступает в атмосферу при сжигании и переработке газа, нефти, угля и выпадает в виде кислотных дождей. Восстановление естественного круговорота азота возможно за счет уменьшения производства азотных удобрений, сокращения промышленных выбросов оксидов азота в атмосферу и прочее.

Круговорот фосфора

В отличие от круговоротов воды, углерода, азота и кислорода, которые являются закрытыми, круговорот фосфора – открытый, т.к. фосфор не образует летучих соединений, поступающих в атмосферу. Фосфор содержится в горных породах, откуда попадает в экосистемы при естественном разрушении пород или при внесении на поля фосфорных удобрений. Растения поглощают неорганические соединения фосфора, а животные питающиеся этими растениями, накапливают фосфор в своих тканях. После разложения мертвых тел животных и растений не весь фосфор вовлекается в круговорот. Часть его вымывается из почвы в водоемы (реки, озера, моря) и оседает на дно. На сушу фосфор возвращается в небольшом количестве с выловленной человеком рыбой.

Воздействие человека на круговорот фосфора Перенос фосфора с суши в океан заметно усилился под влиянием человека. При уничтожении лесов, распашке почв возрастает объем поверхностного стока воды, а кроме того в реки, озера с полей поступают внесенные фосфорные удобрения. Поскольку запасы фосфора на суше ограничены, а его возврат из океана затруднен, в будущем в земледелии возможен недостаток фосфора, что вызовет снижение урожаев (в первую очередь зерновых культур).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агенство по образованию Российской Федерации Саратовский государственный университет

имени Н.Г. Чернышевского

реферат

Поток энергии и круговорот веществ в природе

Выполнила: студентка 3 курса заочного отделения механико-математического факультета

специальность: математика

с дополнительной специальностью информатика

Лебедева Светлана Николаевна

Поверил: профессор кафедры МПБиЭ Кашин Александр Степанович

г. Саратов 2008 г.

Введение

I. Превращение энергии в биосфере

II. Биогеохимические круговороты

2.1 Круговорот воды

2.2 Круговорот кислорода

2.3 Круговорот углерода

2.4 Круговорот азота

2.5 Круговорот фосфора

2.6 Круговорот серы

III.Факторы влияющие на круговорот веществ в природе

IV. Влияние человека на круговороты веществ в природе

Заключение

Список используемых источников литературы

Введение

Большинство веществ земной коры проходит через живые организмы и вовлечено в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, то есть циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами.

Целью данного реферата является изучение циркуляции потока энергии и веществ в природе, и раскрытие выбранной темы.

Тема моего реферата очень велика. О ней можно говорить долго. Но я затрону только те вопросы, которые считаю наиболее важными и близкими к выбранной теме.

I . Превращение энергии в биосфере

Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (СО 2 и Н 2 О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей.

Образованные в процессе фотосинтеза органические вещества могут служить источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растения к растительноядным животным, от них - к плотоядным и т.д. Высвобождение заключенной в органических соединениях энергии происходит в процессе дыхания или брожения. Разрушение использованных или отмерших остатков биомассы осуществляют разнообразные организмы, относящиеся к числу сапрофитов (гетеротрофные бактерии, грибы, некоторые животные и растения). Они разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы и продуцирования органического вещества. Однако содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения, поэтому биосфере необходим приток энергии извне.

В отличие от веществ, которые непрерывно циркулируют по разным блокам экосистемы и всегда могут вновь входить в круговорот, энергия может быть использована только один раз.

Односторонний приток энергии как универсальное явление природы происходит в результате действия законов термодинамики, относящимся к основам физики. Первый закон утверждает, что энергия может переходить из одной формы (например, энергия света) в другую (например, потенциальную энергию пищи), но она никогда не создается вновь и не исчезает.

Второй закон термодинамики гласит, что не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части. В таких превращениях определенное количество энергии рассеивается в недоступную тепловую энергию, и, следовательно, теряется. По этой причине не может быть превращений, например пищевых веществ в вещество, из которого состоит тело организма, идущих со 100-процентной эффективностью.

Существование всех экосистем зависит от постоянного притока энергии, которая необходима всем организмам для поддержания их жизнедеятельности и самовоспроизведения.

Солнце - практически единственный источник всей энергии на Земле. Однако далеко не вся энергия солнечного излучения может усваиваться и использоваться организмами. Лишь около половины обычного солнечного потока, падающего на зеленые растения (то есть на продуценты), поглощается фотосинтетическими элементами и лишь малая доля поглощенной энергии (от 1/100 до 1/20 части) запасается в виде биохимической энергии (энергии пищи).

Таким образом, большая часть солнечной энергии теряется в виде тепла на испарение. В целом поддержание жизни требует постоянного притока энергии. И где бы ни находились живые растения и животные, мы всегда найдем здесь источник их энергии.

II . Биогеохимические круговороты

Химические элементы, входящие в состав живого, обычно циркулируют в биосфере по характерным путям: из внешней среды в организмы и опять во внешнюю среду. Для биогенной миграции свойственно накопление химических элементов в организмах (аккумуляция) и их высвобождение в результате минерализации отмершей биомассы (детрита). Такие пути циркуляции химических веществ (в большей или меньшей степени замкнутые), протекающие с использованием солнечной энергии через растительные и животные организмы, называют биогеохимическими круговоротами (био относится к живым организмам, а гео - к почве, воздуху, воде на земной поверхности).

Различают круговороты газового типа с резервуарами неорганических соединений в атмосфере или океанах (N 2 , О 2 , СО 2 ,Н 2 О) и круговороты осадочного типа с менее обширными резервуарами в земной коре (Р, Са, Fе).

Необходимые для жизни элементы и растворенные соли условно называют биогенными элементами (дающими жизнь), или питательными веществами. Среди биогенных элементов различают две группы: макротрофные вещества и микротрофные вещества.

Первые охватывают элементы, которые составляют химическую основу тканей живых организмов. Сюда относятся: углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.

Вторые включают в себя элементы и их соединения, также необходимые для существования живых систем, но в исключительно малых количествах. Такие вещества часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Хотя микротрофные элементы необходимы для организмов в очень малых количествах, их недостаток может сильно ограничить продуктивность, так же как и нехватка биогенных элементов.

Циркуляция биогенных элементов сопровождается обычно их химическими превращениями. Нитратный азот, например, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В процессах денитрификации и фиксации азота принимают участие различные механизмы, как биологические, так и химические.

В отличие от азота и углерода резервуар фосфора находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами (образование гуано). Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

В отличие от энергии биогенные элементы могут использоваться неоднократно: круговорот их характерная черта. Другое отличие от энергии состоит в том, что запасы биогенных элементов непостоянны. Процесс связывания некоторой их части в виде живой биомассы снижает количество, остающееся в среде экосистемы. И если бы растения и другие организмы, в конечном счете, не разлагались бы, запас биогенов исчерпался бы и жизнь на Земле прекратилась. Отсюда можно сделать вывод, что активность гетеротрофов, и в первую очередь организмов, функционирующих в детритных цепях, - решающий фактор сохранения круговорота биогенных элементов и образования продукции.

Рассмотрим подробнее биогеохимические круговороты некоторых веществ.

2.1 Круговорот воды

Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы - это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища - так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.

В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.

Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.

2.2 Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 10 15 m, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды.

2.3 Круговорот углерода

Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в ФРГ, Шри-Ланка и СССР). Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ. В форме диоксида углерода он входит в состав земной атмосферы, в которой на его долю приходится 0,046% массы.

Углерод имеет исключительное значение для живого вещества (живым веществом в геологии называют совокупность всех организмов, населяющих Землю). Из углерода в биосфере создаются миллионы органических соединений. Углекислота из атмосферы в процессе фотосинтеза, осуществляемого зелеными растениями, ассимилируется и превращается в разнообразные органические соединения растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения, продуцируют в год около 1,5*10 11 m углерода в виде органической массы. Растения частично поедаются животными (при этом образуются пищевые цепи). В конечном счете, органическая масса в результате дыхания, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим другим соединениям - каменным углям, нефти. В процессах распада органических веществ, их минерализации, огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые). В активном круговороте углекислый газ живое вещество участвует очень небольшая часть всей массы углерода. Огромное количество углекислоты законсервировано в виде ископаемых известняков и других пород.

Между углекислым газом атмосферы и водой океана существует подвижное равновесие. Организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Атмосфера пополняется углекислым газом благодаря процессам разложения органических веществ, карбонатов и т.д. Особенно мощным источником являются вулканы, газы которых состоят главным образом из паров воды и углекислого газа.

Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания углекислого газа в атмосфере, связанное с ростом промышленного производства и транспорта.

2.4 Круговорот азота

Азот входит в состав земной атмосферы в несвязанном виде в форме двухатомных молекул. Приблизительно 78% всего объема атмосферы приходится на долю азота. Кроме того, азот входит в состав растений и животных организмов в форме белков. Растения синтезируют белки, используя нитраты из почвы. Нитраты образуются там из атмосферного азота и аммонийных соединений, имеющихся в почве. Процесс превращения атмосферного азота в форму, усвояемую растениями и животными, называется связыванием (или фиксацией) азота.

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты:

2HN0з + СаСОз = Са(NОз)2 + СОС + Н0Н

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий -- «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений. В основном используются нитрат кальция Ca(NO 3) 2 , нитрат аммония NH 4 NO 3 , нитрат натрия NANO 3 , и нитрат калия KNO 3 . Например, в Таиланде используются листья лейкаены как органическое удобрение. Лейкаена принадлежит к бобовым растениям и, как и все они, содержит очень много азота. Поэтому ее можно использовать вместо химического удобрения.

В последнее время наблюдается повышения содержания нитратов в питьевой воде, главным образом за счет усилившегося использования искусственных азотных удобрений в сельском хозяйстве. Хотя сами нитраты не так уж опасны для взрослых людей, в организме человека они могут превращаться в нитриты. Кроме того, нитраты и нитриты используются для обработки и консервирования многих пищевых продуктов, в том числе ветчины, бекона, солонины, а также некоторых сортов сыра и рыбы. Отдельные ученые полагают, что в организме человека нитраты могут превращаться в нитрозамины:

Известно, что нитрозамины способны вызывать онкологические заболевания у животных. Большинство из нас уже подвержено воздействию нитрозаминов, которые в небольшом количестве находятся в загрязненном воздухе, сигаретном дыму и некоторых пестицидах. Полагают, что нитрозамины могут быть причиной 70-90% случаев онкологических заболеваний, возникновение которых приписывают действию факторов окружающей среды.

2.5 Круговорот фосфора

Источником фосфора биосферы является главным образом апатит, встречающийся во всех магматических породах. В превращениях фосфора большую роль играет живое вещество. Организмы извлекают фосфор из почв, водных растворов. Усвоение фосфора растениями во многом зависит от кислотности почвы. Фосфор входит в многочисленные соединения в организмах: белки, нуклеиновые кислоты, костная ткань, лецитины, фитин и другие соединения; особенно много фосфора входит в состав костей. Фосфор жизненно необходим животным в процессах обмена веществ для накопления энергии. С гибелью организмов фосфор возвращается в почву и в илы морей. Он концентрируется в виде морских фосфатных конкреций, отложений костей рыб, что создает условия для создания богатых фосфором пород, которые в свою очередь являются источником фосфора в биогенном цикле.

Содержание фосфора в земной коре составляет 8*10 -20 % (по весу). В свободном состоянии фосфор в природе не встречается вследствие его легкой окисляемости. В земной коре он находится в виде минералов (фторапатит, хлорапатит, вивианит и др.), которые входят в состав природных фосфатов - апатитов и фосфоритов. Фосфор имеет исключительное значение для жизни животных и растений.

Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

2.6 Круговорот серы

Круговорот серы тесно связан с живым веществом. Сера в виде SO 2 , SO 3 , H 2 S и элементарной серы выбрасывается вулканами в атмосферу. С другой стороны, в природе в большом количестве известны различные сульфиды металлов: железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере при участи многочисленных микроорганизмов до сульфатной серы SO 4 2 почв и водоемов. Сульфаты поглощаются растениями. В организмах сера входит в состав аминокислот и белков, а у растений, кроме того, - в состав эфирных масел и т.д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются очень сложными превращениями серы. При разрушении белков при участии микроорганизмов образуется сероводород. Далее сероводород окисляется либо до элементарной серы, либо до сульфатов. В этом процессе участвуют разнообразные микроорганизмы, создающие многочисленные промежуточные соединения серы. Известны месторождения серы биогенного происхождения. Сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера создает гипс. В свою очередь сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию.

III . ФАКТОРЫ ВЛИЯЮЩИЕ НА КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

Значительную роль в эволюции неживой природы играют живые организмы. Их деятельность существенно влияет на формирование состава атмосферы и земной коры. Большой вклад в понимание взаимосвязей между живой и неживой природой внёс выдающийся советский учёный В.И.Вернадский. Он выявил геологическую роль живых организмов и показал, что их деятельность представляет собой важнейший фактор преобразования минеральных оболочек планеты.

Таким образом, живые организмы, испытывая на себе влияние факторов неживой природы, своей деятельностью изменяют условия окружающей среды, т.е. среды своего обитания. Это приводит к изменению структуры всего сообщества - биоценоза.

Установлено, что азот, фосфор и калий могут оказывать наибольшее положительное влияние на урожаи культурных растений, и потому эти три элемента в наибольших количествах вносят в почву с удобрениями, применяемыми в сельском хозяйстве. Поэтому азот и фосфор оказались главной причиной ускоренной эвтрофизации озёр в странах с интенсивным земледелием. Эвтрофизация - это процесс обогащения водоёмов питательными веществами. Она представляет собой естественное явление в озёрах, так как реки приносят питательные вещества с окружающих дренажных площадей. Однако этот процесс обычно идёт очень медленно, в течение тысяч лет. Неестественная эвтрофизация, ведущая к стремительному увеличению продуктивности озёр, происходит в результате стока с сельскохозяйственных угодий, которые могут быть обогащены питательными веществами удобрений.

Существуют также два других важных источника фосфора - сточные воды и моющие средства. Сточные воды, как в своём первоначальном виде, так и обработанные, обогащены фосфатами. Бытовые детергенты содержат от 15% до 60% биологически разрушаемого фосфата. Кратко можно резюмировать, что эвтрофизация, в конце концов, приводит к истощению ресурсов кислорода и к гибели большинства живых организмов в озёрах, а в крайних ситуациях - и в реках.

Организмы в экосистеме связаны общностью энергии и питательных веществ, и необходимо чётко разграничить эти два понятия. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который, в конце концов, и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит постоянный круговорот питательных веществ, в котором участвуют и живой и неживой компоненты. Такие круговороты называются биогеохимическими циклами.

На глубине в десятки километров горные породы и минералы подвергаются воздействию высоких давлений и температур. В результате происходит метаморфизм (изменение) их структуры, минерального, а иногда и химического состава, что приводит к образованию метаморфических пород.

Опускаясь ещё дальше в глубь Земли, метаморфические породы могут расплавиться и образовать магму. Внутренняя энергия Земли (т.е. эндогенные силы) поднимает магму к поверхности. С расплавленными горными породами, т.е. магмой, химические элементы выносятся на поверхность Земли во время извержений вулканов, застывают в толще земной коры в виде интрузий. Процессы горообразования поднимают глубинные горные породы и минералы на поверхность Земли. Здесь горные породы подвергаются воздействию солнца, воды, животных и растений, т.е. разрушаются, переносятся и отлагаются в виде осадков в новом месте. В результате образуются осадочные горные породы. Они накапливаются в подвижных зонах земной коры и при пригибании снова опускаются на большие глубины (свыше 10 км).

Вновь начинаются процессы метаморфизма, переправления, кристаллизации, и химические элементы возвращаются на поверхность Земли. Такой "маршрут" химических элементов называется большим геологическим круговоротом. Геологический круговорот не замкнут, т.к. часть химических элементов выходит из круговорота: уносится в космос, закрепляется прочными связями на земной поверхности, а часть поступает извне, из космоса, с метеоритами.

Геологический круговорот - это глобальное путешествие химических элементов внутри планеты. Более короткие путешествия они совершают на Земле в пределах отдельных её участков. Главный инициатор - живое вещество. Организмы интенсивно поглощают химические элементы из почвы, воздуха воды. Но одновременно и возвращают их. Химические элементы вымываются из растений дождевыми водами, выделяются в атмосферу при дыхании и отлагаются в почве после смерти организмов. Возвращённые химические элементы снова и снова вовлекаются живым веществом в "путешествия". Всё вместе и составляет биологический, или малый, круговорот химических элементов. Он тоже не замкнут.

Часть элементов-"путешественников" уносится за его пределы с поверхностными и грунтовыми водами, часть - на разное время "выключается" из круговорота и задерживается в деревьях, почве, торфе.

Ещё один маршрут химических элементов проходит сверху вниз от вершин и водоразделов к долинам и руслам рек, впадинам, западинам. На водоразделы химические элементы поступают только с атмосферными осадками, а выносятся вниз и с водою, и под действием силы тяжести. Расход вещества преобладает над поступлением, о чём говорит само название ландшафтов водоразделов - элювиальные.

На склонах жизнь химических элементов изменяется. Скорость их передвижения резко увеличивается, и они "проезжают" склоны, как пассажиры, удобно устроившиеся в купе поезда. Ландшафты склонов так и называются - транзитными.

"Отдохнуть" от дороги химическим элементам удаётся лишь в аккумулятивных (накапливающих) ландшафтах, расположенных в понижениях рельефа. В этих местах они часто и остаются, создавая для растительности хорошие условия питания. В некоторых случаях растительности приходится бороться уже с избытком химических элементов.

Уже много лет назад в распределение химических элементов вмешался человек. С начала ХХ столетия деятельность человека стала главным способом их путешествия. При добыче полезных ископаемых огромное количество веществ изымается из земной коры. Их промышленная переработка сопровождается выбросами химических элементов с отходами производства в атмосферу, воды, почвы. Это загрязняет среду обитания живых организмов. На земле появляются новые участки с высокой концентрацией химических элементов - рукотворные геохимические аномалии. Они распространены вокруг рудников цветных металлов (меди, свинца). Эти участки иногда напоминают лунные пейзажи, потому что практически лишены жизни из-за высоких содержании вредных элементов в почвах и водах. Остановить научно-технический прогресс невозможно, но человек должен помнить, что существует порог в загрязнении природной среды, переходить который нельзя, за которым неизбежны болезни людей и даже вымирание цивилизации.

Создав биогеохимические "свалки", природа, возможно, хотела предостеречь человека от непродуманной, безнравственной деятельности, показать ему на наглядном примере, к чему приводит нарушение распределения химических элементов в земной коре и на её поверхности.

IV . ВЛИЯНИЕ ЧЕЛОВЕКА НА КРУГОВОРОТЫ ВЕЩЕСТВ В ПРИРОДЕ

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород, и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но, тем не менее, не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах - наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры, как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 - 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

Заключение

По результатам проведённой работы по теме «Поток энергии и круговорот веществ в природе можно сделать следующие выводы.

В настоящее время окружающей средой для человечества стала практически вся биосфера, для деятельности в которой человеку требуется все больше и больше энергии. Благодаря ископаемым энергетическим запасам (в основном нефть, угль, газ) стали возможными процессы индустриализации. Но их исчерпание в обозримом будущем неизбежно, поэтому необходимо искать другие источники энергии. К тому же человечеству грозит истощение невозобновляемых материальных ресурсов, таких как запасы серебра, цинка, урана и др. Несовершенство современной технологии не позволяет полностью перерабатывать минеральное сырье. Большая часть его возвращается в природу в виде отходов, загрязняющих атмосферу, гидросферу и литосферу.

К возобновляемым материальным ресурсам относятся растительный и животный мир, плодородие почв. Человек активно использует в сельском и лесном хозяйстве почти все наземные и многие водные биогеоценозы. Но в настоящее время его деятельность отражается практически на всех остальных естественных экосистемах. Антропогенные воздействия (загрязнение нефтью океанов, «парниковый эффект» вследствие увеличения СО 2 в атмосфере, «кислотные дожди», разрушение озонового экрана и др.) могут привести к значительным отклонениям в равновесии экосистем, делают прерывным биотический круговорот и отрицательно сказываются на биосфере в целом. Сбалансированность биологического круговорота, т.е. его уравновешенность, а, следовательно, и устойчивость экосистемы определяется максимально возможным числом связей между видами в пищевой сети. Поэтому все настойчивее выдвигаются требования создать промышленность, безвредную для природы.

Список исп ользуемых источников литературы

Болин Б., Десс Б. Р., Дж. Ягер, Уоррик Р. Парниковый эффект, изменение климата и экосистемы. - Ленинград: Гидрометеоиздат, 1989

Криксунов Е.А., Пасечник В.В., Сидорин А.П. «Экология» - М.: Дрофа, 1995.

Мустафин А.Г., Лагкуева Ф.К., Быстренина Н.Г. и дрю; Под ред. В.Н. Ярыгина Биология. Для поступающих в вузы - Мю: Высшая школа, 1998.

Рудзидис Г., Фельдман Ф. Химия 11 - М.: Просвещение, 2001.

Фримантл М. Химия в действии - М.: Просвещение, 1999.

Подобные документы

    Беспрерывная циркуляция в биосфере химических элементов, переход их из внешней среды в организмы и обратно. Биогеохимические круговороты: круговорот воды, газообразных веществ, химических элементов. Биотехносфера и ноосфера, биогеохимическая миграция.

    реферат , добавлен 22.10.2009

    Основные понятия о биогеохимических циклах. Круговорот и миграция химических элементов в природе. Круговорот азота, фосфора, серы, углерода, кремния, железа и марганца. Антропогенное влияние человека. Постоянные компоненты природных пресных вод.

    курсовая работа , добавлен 22.03.2012

    Понятие круговорота воды в природе и его роль в природе. Сферы Земли и состав гидросферы. Что из себя представляет водная оболочка Земли. Из чего складывается круговорот веществ. Понятие испарения и конденсации. Составляющие годового поступления воды.

    презентация , добавлен 09.02.2012

    Обмен веществ со средой как специфическое свойство жизни. Общее значение продуцентов, консументов и редуцентов. Полный цикл редукции органического вещества. Уровни организации живой материи. Малый круговорот веществ в биосфере. Круговорот углерода и серы.

    реферат , добавлен 01.01.2010

    Роль микроорганизмов в круговороте азота, водорода, кислорода, серы, углерода и фосфора в природе. Различные типы жизни бактерий, основанные на использовании соединений различных химических веществ. Роль микроорганизмов в эволюции жизни на Земле.

    реферат , добавлен 28.01.2010

    Рассмотрение круговорота веществ как результата экофизиологической взаимосвязи автотрофов и гетеротрофов. Описание основных круговоротов - большого (геологического) и малого (биогеохимического). Функции живого вещества в биосфере (по Вернадскому В.И.).

    презентация , добавлен 18.04.2012

    Роль микроорганизмов в круговороте углерода в природе. Углеродное и азотное питание прокариот с различными типами жизни. Значение микроорганизмов в геологических процессах. Типы микрофлоры почвы: зимогенная, автохтонная, олиготрофная и автотрофная.

    презентация , добавлен 18.12.2013

    Начало и вечность жизни - учение Вернадского и Докучаева о биосфере, единстве материальной и духовной культуры людей с окружающей природной средой. Что такое "биосфера", ее составляющие и связь с другими геосферами планеты. Круговорот веществ в природе.

    презентация , добавлен 11.03.2011

    Описание основных состояний воды - жидкого, твердого, газообразного. Изучение физических процессов испарения жидкости и конденсации пара. Схема образования облаков. Рассмотрение круговорота воды в природе как связующего звена между всеми оболочками Земли.

    презентация , добавлен 19.09.2011

    Понятие и биологическое значение потока энергии в сообществе, принципы и направления данного потока, влияющие на него факторы. Круговорот веществ в экосистеме. Критерии, характеризующие продуктивность сообщества. Сущность экологической сукцессии.

Рис. 14.5 . Сулммарный поток энергии (темные стрелки) и круговорот веществ (светлые стрелки) в экосистеме.

Таким образом, основу экосистемы составляют автотрофные организмы -продуценты (производители, созидатели), которые в процессе фотосинтеза создают богатую энергией пищу - первичное органическое вещество. В наземных экосистемах наиболее важная роль принадлежит высшим растениям, которые, образуя органические вещества, дают начало всем трофическим связям в экосистеме, служат субстратом для многих животных, грибов и микроорганизмов , активно влияют на микроклимат биотопа. В водных экосистемах главными производителями первичного органического вещества являются водоросли .

Готовые органические вещества используют для получения и накопление энергии гетеротрофы , или консументы (потребители). К гетеротрофам относятся растительноядные животные (консументы I Порядка), плотоядные, живущие за счет растительноядных форм (консументы II порядка), потребляющие других плотоядных (консументы Ш порядка) и т. д.

Особую группу консументов составляют редуценты (разрушители, или] деструкторы), разлагающие органические остатки продуцентов и консументов до простых неорганических соединений, которые зат-ем используются продуцентами. К редуцентам относятся главным образом микрорганизмы - бактерии и грибы . В наземных экосистемах особенно важное значение имеют почвенные редуценты, вовлекающие в общий круговорот органические вещества отмерших растений (они потребляют до 90% первичной продукции леса). Таким образом, каждый живой организм в составе экосистемы занимает определенную экологическую нишу (место) в сложной системе экологических взаимоотношений с другими организмами и абиотическими условиями среды.

Пищевые цепи (сети) и трофические уровни. Основой любой экосистемы, ее фундаментом являются пищевые (трофические) и сопутствующие им энергетические связи. В них постоянно происходит перенос Вещества и энергии, которые заключены в пище, созданной преимущественно растениями.

Перенос потенциальной энергии пищи, созданной растениями, через ряд организмов путем поедания одних видов другими называется цепью питания или пищевой цепью, а каждое ее звено -трофическим уровнем (рис. 14.6).

Рис. 14.6 . Цепи питания африканской саванне.

Рис. 14.7. Сети питания в экологической системе.

Существуют два основных типа пищевых цепей - пастбищные (цепи выедания, или цепи потребления) и детритные (цепи разложения). Пастбищные цепи начинаются с продуцентов: клевер ->кролик -> волк ; фитопланктон (водоросли) -> зоопланктон (простейшие) ->плотва -> щука -> скопа .

Детритные цепи начинаются от растительных и животных остатков, экскрементов животных - детрита; идут к микроорганизмам, которые ими питаются, а затем к мелким животным (детритофагам) и к их потребителям - хищникам. Детритные цепи наиболее распространены в лесах, где большая часть (более 90%) ежегодного прироста биомассы растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь разложению (сапротрофными организмами) и минерализации. Типичным примером детритной пищевой связи наших лесов является следующий: листовая подстилка -> дождевой червь -> черный дрозд-> ястреб-перепелятник. Кроме дождевых червей, детритофагами являются мокрицы , клеши, ногохвостки, нематоды и др.

Экологические пирамиды. Пищевые сети внутри каждого биогеоценоза имеют хорошо выраженную структуру. Она характеризуется количеством, размером и общей массой организмов - биомассой - на каждом уровне цепи питания. Для пастбищных пищевых цепей характерно увеличение плотности популяций, скорости размножения и продуктивности их биомасс. Снижение биомассы при переходе с одного пищевого уровня на другой обусловлено тем, что далеко не вся пища ассимилируется консументами. Так, например, у гусеницы, питающейся листьями, в кишечнике всасывается только половина растительного материала, остальное выделяется в виде экскрементов. Кроме того, большая часть питательных веществ, всасываемых кишечником, расходуется на дыхание и лишь 10-15% в конечном счете используется на построение новых клеток и тканей гусеницы. По этой причине продукция организмов каждого последующего трофического уровня всегда меньше (в среднем в 10 раз) продукции предыдущего, т. е. масса каждого последующего звена в цепи питания прогрессивно уменьшается. Эта закономерность получила название правило экологической пирамиды (рис. 14.8).

Рис, 14.8. Упрощенная экологическая пирамида.

Различают три способа составления экологических пирамид:

1. Пирамида численностей отражает численное соотношение особей разных трофических уровней экосистемы. Если организмы в пределах одного или разных трофических уровней сильно различаются между собой по размерам, то пирамида численностей дает искаженные представления об истинныхсоотношениях трофических уровней. Например, в сообществе планктона численность продуцентов в десятки и сотни раз больше численности консументов, а в лесу сотни тысяч консумен-тов могут питаться органами одного дерева - продуцента.

2. Пирамида биомасс показывает количество живого вещества, или биомассы, на каждом трофическом уровне. В большинстве наземных экосистем биомасса продуцентов, т. е. суммарная масса растений наибольшая, а биомасса организмов каждого последующего трофического уровня меньше предыдущего. Однако в некоторых сообществах биомасса консументов I порядка бывает больше биомассы продуцентов. Например, в океанах, где основными продуцентами являются одноклеточные водоросли с высокой скоростью размножения, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы. Вместе с тем, вся образованная водорослями продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества. В связи с этим в океане пирамида биомасс имеет обратное соотношение, т. е. «перевернута». На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни хищников велика, скорость оборота их генераций, наоборот, мала, и в их теле задерживается значительная часть вещества, поступающего по цепям питания.

3. Пирамида энергии отражает величину потока энергии в цепи питания. На форму этой пирамиды не влияют размеры особей, и она всегда будет иметь треугольную форму с широким основанием внизу, как это диктуется вторым законом термодинамики. Поэтому пирамида энергии дает наиболее полное и точное представление о функциональной организации сообщества, о всех обменных процессах в экосистеме. Если пирамиды чисел и биомасс отражают статику экосистемы (количество и биомассу организмов в данный момент), то пирамида энергии -динамику прохождения массы пищи через цепи питания. Таким образом, основание в пирамидах чисел и биомасс может быть больше или меньше, чем последующие трофические уровни (в зависимости от соотношения продуцентов и консументов в различных экосистемах). Пирамида энергии всегда суживается кверху. Это обусловлено тем, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы. Поэтому каждый последующий уровень всегда будет меньше предыдущего. В наземных экосистемах уменьшение количества доступной энергии обычно сопровождается снижением численности и биомассы особей на каждом трофическом уровне. Вследствие таких больших потерь энергии на построение новых тканей и дыхание организмов цепи питания не могут быть длинными; обычно они состоят из 3-5 звеньев (трофических уровней).

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение, поскольку продукция природных и искусственных сообществ (агроиенозов) является основным источником запасов пищи для человечества. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода необходимой для человека продукции.

Образование простейших минеральных и органоминеральных компонентов в газообразном жидком или твердом состоянии которые в последствии становятся составными компонентами для новых циклов круговорота веществ. Из оставшихся 66 большая часть идет на нагревание атмосферы и суши испарение и круговорот воды в экосфере преобразуется в энергию ветров. Круговорот воды гидрологический цикл В результате круговорота воды происходит ее накопление очистка и перераспределение планетарного запаса воды.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 5

Круговорот веществ и энергии

Круговорот веществ и энергии в природе складывается из нескольких взаимосвязанных процессов:

  1. Регулярно повторяющийся или непрерывный поток энергии, а также образование и синтез новых соединений.
  2. Постоянный или периодический перенос и перераспределение энергии, вынос и направленное перемещение синтезированных соединений под влиянием физических, химических и биологических агентов.
  3. Разложение и деструкция (разрушение) синтезированных ранее соединений под влиянием биогенных или абиогенных факторов среды.
  4. Образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии, которые в последствии становятся составными компонентами для новых циклов круговорота веществ.

Энергия Солнца

Родоначальником всех известных видов энергии, включая и ядерную, является Солнце. За трое суток Земля получает от Солнца такое количество энергии, какое могло бы освободиться при сжигании всех имеющихся природных запасов угля, газа, нефти и древесины.

Энергия Солнца излучается в космос в виде спектра ультрафиолетового, видимого (светового) и инфракрасного излучения и других форм лучистой и электромагнитной энергии.

Рис. Поток энергии к земной поверхности и от нее

Около 34% энергии Солнца сразу же отражается назад в космос облаками, пылью и другими веществами находящимися в атмосфере, а также собственно поверхностью Земли. Из оставшихся 66% большая часть идет на нагревание атмосферы и суши, испарение и круговорот воды в экосфере, преобразуется в энергию ветров. И лишь незначительная часть этой энергии (0,023%)улавливается зелеными растениями и используется в процессе фотосинтез для образование органических соединений.

Круговорот воды (гидрологический цикл)

В результате круговорота воды происходит ее накопление, очистка и перераспределение планетарного запаса воды.

Рис. Упрощенная диаграмма круговорота воды

Солнечная энергия и земное притяжение непрерывно перемещают воду между океанами, атмосферой, сущей и живыми организмами. Важнейшими процессами этого круговорота являются испарение (превращение воды в водяной пар), конденсация (превращение водяного пара в капли жидкости), осадки (дождь, изморось, град, снег) и сток воды назад в море для возобновления цикла.

Под воздействие поступающей солнечной энергии вода испаряется с поверхности океанов, рек, озер, почв и растений и поступает в атмосферу. Ветры и воздушные массы переносят водяной пар в различные районы Земли. Понижение температуры в отдельных частях атмосферы приводит к образованию массы мельчайших капелек воды в виде облаков или тумана. В конце концов капли воды сливаются вместе и становятся на столько тяжелыми, что выпадают на поверхность суши или водоема в виде атмосферных осадков.

В среднем молекула воды находится в воздухе около 10 дней, прежде чем попадает с осадками на землю. Примерно половина всех осадков на планете выпадает в зоне тропических лесов.

Часть пресной воды, выпадающей на землю, замерзает в ледниках. Однако в основном вода стекает в ближайшие озера, руки и ручьи, которые несут ее обратно в океан, тем самым замыкая кольцо круговорота.

Значительная часть воды просачивается глубоко в грунт. Там происходит накопление грунтовых вод в водоносных горизонтах. Однако циркуляция подземных вод происходит несравнимо медленнее, чем циркуляция поверхностных и атмосферных вод. Подземные источники и водотоки в итоге возвращаются на поверхность суши и в реки и озера, откуда снова испаряется или стекает в океан.

Человек вмешивается в круговорот воды двумя способами:

  • забор больших количеств пресной воды из рек, озер и водоносных горизонтов. В густозаселенных или интенсивно орошаемых районах водозабор привел к истощению запасов грунтовых вод или вторжению океанической соленой воды в подземные водоносные горизонты.
  • сведение растительного покрова суши в интересах развития сельского хозяйства, при добыче полезных ископаемых, строительстве дорог и жилья. Это приводит к уменьшению просачивания поверхностных вод под землю, что сокращает пополнение запасов грунтовых вод, увеличивается риск наводнений и повышает интенсивность стока, тем самым усиливая эрозию почв.

Биогеохимические круговороты

Любые элементы или их соединения необходимы для жизнедеятельности организмов, их роста и размножения называются питательными веществами . Они включают как органические вещества (сахар и протеины) так и неорганические (вода, углекислый газ, кислород, нитраты, фосфаты, железо, мель).

Около 40 элементов и их соединений являются наиболее важными для живых организмов. Эти элементы необходимые в больших количествах называются питательными макроэлементами . К ним относятся углерод, кислород, водород, азот, фосфор, сера, кальций, магний, калий. Они составляют 97: массы человеческого тела.

Около 30 других элементов, необходимых для жизни в небольших или незначительных количествах, называют питательными микроэлементами . Это железо, медь, цинк, хлор, йод.

Большинство элементов на Земле находятся в таком состоянии, что не могут быть напрямую использованы живыми организмами. К счастью, элементы и их соединения, необходимые в качестве питательных веществ, находятся в постоянном круговороте и способны преобразовываться в необходимые для поглощения формы.

Круговорот веществ в биосфере обусловлен совместным действие биологических, геохимических и геофизических факторов.

Биологические циклы обусловлены жизнедеятельностью организмов: питание, пищевые сети, размножение, рост, передвижение, смерть, разложение, минерализация.

Абиогенные циклы сложились намного раньше биологических; они включают в себя весь комплекс геологических, геохимических, гидрологических и атмосферных процессов.

Символом круговорота веществ является спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.

К главным циклам можно отнести круговороты углерода, кислорода, азота, фосфора, серы и биогенных катионов.

Круговорот углерода

Рис. Круговорот углерода в биосфере

Углерод является основным «строительным материалом» молекул органических соединений. Большинство наземных растений получают необходимый углерод, поглощая углекислый газ из атмосферы., концентрация которого там составляет 0,04%. Фитопланктон (микроскопические растения, плавающие в водных экосистемах) получают углерод их углекислого газ, растворенного в воде.

В процессе фотосинтеза растения – продуценты превращают углерод углекислого газа в углерод сложных органических соединений, например глюкозы:

углекислый газ + вода + солнечная энергия = глюкоза + кислород

Затем в процессе клеточного дыхания глюкоза и другие сложные органические соединения расщепляются и преобразуют углерод обратно в углекислый газ, для повторного использования продуцентами:

глюкоза + кислород = углекислый газ + вода + энергия

В круговороте углерода, а точнее наиболее подвижное его формы – углекислого газа, четко прослеживается трофическая цепь: продуценты, консументы, редуценты.

Углерод быстро циркулирует между атмосферой, гидросферой и живыми организмами. Некоторая часть планетарного углерода на длительные периоды «связывается» в форме ископаемых видов топлива – каменного и бурого угля, нефти, природного газа, торфа, сланцев – процесс образования которых в литосфере длился миллионы лет. В таком виде углерод остается «связанным» до тех пор пока не будет снова введен в атмосферу в форме углекислого газа, что происходит при добыче и сжигании минерального топлива.

Вмешательство человека в круговорот углерода резко возрастает, особенно начиная с 1950-х годов, в результате быстрого роста населения и использования ресурсов, и происходит оно в основном двумя способами:

  • Сведение лесов и другой растительности без достаточных лесовосстановительных работ, в связи с чем уменьшается общее количество растительности, способной поглощать углекислый газ.
  • Сжигание углеродсодержащих ископаемых видов топлива и древесины. Образующийся при этом углекислый газ попадает в атмосферу, постепенное возрастание содержания которого, вызывает так называемый «парниковый эффект».

Круговорот азота

Рис. Круговорот азота в биосфере

Круговорот азота охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом (N 0 3- и NH 4 ). И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а точнее почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Правда, часть его окисляется в воздухе — во время грозовых разрядов — и поступает в почву с дождевой водой, но таким способом его фиксируется в 10 раз меньше, чем с помощью бактерий.

Вмешательство человека в круговорот азота состоит в следующем:

  • при сжигании ископаемого топлива в атмосферу выбрасываются большие количества оксида азота (NO ). Оксид азота затем соединяется в атмосфере с кислородом и образуется диоксид азота (NO 2 ),который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO 3 ). Эта кислота становится компонентом кислотных осадков.
  • использование удобрений приводит к выделению в атмосферу «парникового газа» закиси азота (N 2 O )
  • увеличение количества нитратов и ионов аммония в водных экосистемах при смыве с удобрений с полей. Избыток питательных веществ приводит к быстрому росту водорослей, при разложении которых расходуется растворенный кислород, что приводит к массовым морам рыб.

Круговорот фосфора

Рис. Круговорот фосфора в биосфере

Фосфор, главным образом в виде фосфат-ионов (РО 3- и НРО 4 2- ), является важным питательным элементом как для растений, так и для животных. Он входит в состав молекул ДНК, несущих генетическую информацию; молекул АТФ и АДФ, в которых запасается необходимая для организмов химическая энергия, используемая при клеточном дыхании; молекул жиров, образующих клеточные мембраны в растительных и животных клетках; а также веществ, входящих в состав костей и зубов. Общий круговорот фосфора можно разделить на две части — водную и наземную

Фосфор медленно перемещается из фосфатных месторождений на суше и мелководных океанических осадков к живым организмам и затем обратно. Фосфор, высвобождаемый при медленном разрушении (или выветривании) фосфатных руд, растворяется почвенной влагой и поглощается корнями растений.

Животные получают необходимый им фосфор, поедая растения или других растительноядных животных. Значительная часть этого фосфора в виде экскрементов животных и продуктов разложения мертвых животных и растений возвращается в почву, в реки и в конце концов на дно океана в виде нерастворимых фосфатных осадочных пород.

Часть фосфора возвращается на поверхность суши в виде гуано — обогащенной фосфором органической массы экскрементов питающихся рыбой птиц (пеликанов, олушей, бакланов и т. п.). Однако несравнимо большее количество фосфатов ежегодно смывается с поверхности суши в океан в результате природных процессов и антропогенной деятельности. Вмешательство человека в круговорот фосфора сводится в основном к двум вариантам:

  • добыча больших количеств фосфатных руд для производства минеральных удобрений и моющих средств;
  • увеличение избытка фосфат-ионов в водных экосистемах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей фосфатных удобрений, а также очищенных и неочищенных коммунально-бытовых стоков. Избыток этих элементов способствует «взрывному» росту сине-зеленых водорослей и других водных растений, что нарушает жизненное равновесие в водных экосистемах.

Другие похожие работы, которые могут вас заинтересовать.вшм>

384. 206.82 KB
Тема: Биоэнергетика Вопросы: Взаимосвязь обмена веществ и обмена энергии. Источники энергии и законы термодинамики. Взаимосвязь обмена веществ и обмена энергии. Источники энергии и законы термодинамики.
6645. Обмен веществ и энергии (метаболизм) 39.88 KB
Поступление веществ в клетку. Благодаря содержанию растворов солей сахаров и других осмотически активных веществ клетки характеризуются наличием в них определенного осмотического давления. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.
6289. ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ. РАЦИОНАЛЬНОЕ ПИТАНИЕ 14.42 KB
Понятие об обмене веществ в организме животных и человека. Основные понятия и определения физиологии обмена веществ и энергии. Понятие об обмене веществ в организме животных и человека.
3469. КРУГОВОРОТ ВОДЫ ОЧИСТКА СТОЧНЫХ ВОД 10.91 MB
Без воды жизнь существовать не может. На земле её очень много, около 70% поверхности покрыто морями и океанами, но это вода – солёная. Все основные наземные экосистемы, включая и человеческую, зависят от наличия пресной воды, содержащей менее 0,01% солей
7649. АНАЛИЗ ПОТОКОВ ЭНЕРГИИ 37.99 KB
В этом примере электропотребление измеряется стационарным либо временно установленным счётчиком в то время как количество отводимого тепла в градирне водяного охлаждения вычисляется путём измерения температур охлаждающей воды в подающем и обратном трубопроводах и пересчётом разницы температур в коэффициент энергопотока. Данное вычисление осуществляется умножением теплоёмкости воды на скорость потока который определяется либо путём измерения разницы давления в насосе либо путём использования накладного расходомера. Если температура...
15750. Преобразование энергии в клетке. 4.68 MB
Животные используют химическую энергию выделяющуюся при окислении органических веществ синтезированных растениями Рис. В биологических процессах проходящих при постоянных температурах и давлениях с незначительным изменением объема если не выделяются газы: где F - свободная энергии Гельмгольца: F =U – TS . Молекула отдавшая электрон оказывается в окисленном состоянии а принявшая электрон – в восстановленном. Соответственно процесс отдачи электрона называют окислением а принятия - восстановлением данного вещества.
18049. Фотоэлектрическое преобразование солнечной энергии 883.75 KB
Солнечная энергетика - направление нетрадиционной энергетики основанное на непосредственном использовании излучения Солнца с целью получения электрической энергии. Получение электрической энергии при помощи энергии Солнца позволяет доставить электричество в самые удаленные и труднодоступные участки планеты. Из-за поглощения при прохождении атмосферной массы Земли максимальный поток солнечного излучения...
3875. Исследование передачи электрической энергии на постоянном токе 13.69 KB
Краткое содержание работы Лабораторная работа нацелена на изучение закономерностей передачи электрической энергии на постоянном токе от источника в нагрузку например через некоторою промежуточную цепь линию. Эти закономерности являются первой ступенью изучения передачи энергии от источника в нагрузку в самом общем случае например на переменном токе при передаче энергии в нагрузку через распределенную цепь. При подготовке к работе необходимо ознакомиться с методическими указаниями рабочим заданием изучить учебную литературу и ответить...
12318. 50.83 KB
Принципиальные схемы солнечного горячего водоснабжения. Солнечных водонагревательных коллекторов систем солнечного горячего водоснабжения. Теплопроизводительность плоских солнечных водонагревательных коллекторов в одно – и двухконтурной стемах солнечного горячего водоснабжения...
17563. Совершенствование ценовой стратегии Веллнесс-центра “Формула Энергии” 455.63 KB
Описание деятельности веллнесс-центра “Формула Энергии”, её места на рынке, рассмотрена специфика ценообразования, применяемого на рынке фитнес-услуг, будет проанализирована ценовая стратегия компании. На основании вышеизложенного будут выдвинуты гипотезы, требующие проверки