Какие водоросли находятся на большой глубине. Низшие растения, или водоросли

Цвет водорослей далеко не всегда зеленый, как у наземных растений: они бывают розовыми, ярко-красными, вишневыми, бордовыми, лиловыми, желтыми, голубовато-зелеными, оливково-зелеными, бурыми и даже черными. В целом по окраске выделяют 3 большие группы макрофитов: зеленые, бурые, красные. Цветовое разнообразие водорослей связно с тем, что наряду с хлорофиллами они содержат и другие пигменты – каротиноиды и фикобилины. Эти до-полнительные пигменты способны поглощать энергию лучей солнечного света, недоступных хлорофиллу. Например, водоросли, обитающие на глубинах, куда проникает свет преимущественно зелено-голубой части спектра, имеют дополнительный красный пигмент фикоэритрин; он поглощает энергию именно этих сине-зеленых световых волн и передает ее клеткам, содержащим хлорофилл, где она используется для синтеза сахаров в процессе фотосинтеза. Фикоэритрин придает водорослям красный цвет. Каротиноиды активны преимущественно в более коротковолновой сине-зеленой части спектра; они придают водорослям желтовато-бурый цвет. Наличие тех или иных пигментов или же их одновременное присутствие в макрофите, но в различных соотношениях, и обусловливает все разнообразие цветовых оттенков у водорослей.

Рост водорослей зависит в первую очередь от света, который ограничивает глубину их обитания. За свет даже в хорошо освещенных местах между растениями идет жесткая конкуренция, которая порой не обходится без курьезов, когда, например, более крупные водоросли алярии вытесняются значительно более мелкими ламинариями. Происходит это потому, что в начале своего развития молодые, еще невысокие растения алярий заслоняются ламинариями, их развитие угнетается, и доминирующими водорослями становятся ламинарии. Если же секаторами удалить все растения ламинарий, то алярии вновь разрастутся. Но и между водорослями одного вида тоже наблюдается борьба за свет, если «листва» их становится слишком густой. Тогда молодые растения могут поселяться только по краям густых скоплений родителей-спорофитов либо ждать, пока в зарослях взрослых растений не появится свободное место.

Помимо хорошей освещенности макрофитам для нормального роста необходимо еще и движение воды, обеспечивающее приток к ним питательных веществ (в основном азота и фосфора) и кислорода. К тому же движение воды ограничивает поселение на водорослях растительноядных животных. Однако слишком сильное течение может оторвать водоросли от субстрата, к которому они прикреплены (грунта, камней, створок раковин и т.д.), или же привести к повреждению самого растения.

Рост и развитие водорослей во многом зависит от температуры. Она определяет, например, в какой момент слоевища водорослей из микроскопических разовьются в макроскопические или когда макрофиты начнут готовиться к размножению. Например, у некоторых видов ламинарии органы размножения закладываются только при температуре ниже + 10оС, причем достаточно, чтобы она продержалась в течение всего лишь одной ночи! Температура ускоряет или замедляет темпы роста и развития отдельных видов, что обусловливает конкурентную борьбу между ними.

Присутствие растительноядных животных (брюхоногих моллюсков, морских ежей, ракообразных, рыб) также является фактором, влияющим на жизнь водорослей. В рассказе о морских ежах мы уже говорили, как уничтожение касатками каланов привело к чрезмерному размножению морских ежей, которыми питались каланы; а ежи, биомасса которых за 10 лет выросла в 8 раз, «съели» бурые водоросли, понизив их биомассу за эти годы в 12 раз! Такое же положение наблюдалось и у берегов Канады: при активном вылове омаров, питающихся морскими ежами, существенно уменьшались размеры зарослей ламинариевых водорослей. Поэтому довольно часто глубина обитания водорослей зависит от присутствия морских ежей. Некоторые виды водорослей чувствительны даже к присутствию собственных сородичей, но другого вида. Например, фукусы обычно растут в зоне, которая обнажается во время отлива, – глубже грунт занят другими водорослями. В Арктике же, где число видов водорослей уменьшается, фукусовые растут и глубже. То же самое наблюдается и в сильно опресненном Балтийском море.

В настоящее время в некоторых бухтах исчезают крупные морские водоросли. Это – результат загрязнения воды. Дело в том, что в такой среде быстро развиваются микроскопические водоросли – они обрастают проростки более крупных водорослей и губят их, т.к. часто проростки талломов крупных водорослей по размерам не превосходят своих «губителей».

Самыми разнообразными среди прикрепленных водорослей являются красные – количество их видов превышает 4 000! А самыми крупными – бурые (их насчитывается около 1500 видов): в спокойных водах ламинария и макроцистис достигают в длину соответственно более 100 и 200 м. Кстати, макроцистис является «рекордсменом» среди водорослей по скорости роста: в день его слоевища вырастают на 30 см.

К бурым водорослям принадлежат и саргассы, среди которых есть формы, прикрепленные ко дну и неприкрепленные, плавающие. Эти плавающие водоросли населяют громадную область в Атлантическом океане – Саргассово море, не имеющее границ. Колумб назвал его Травяным морем, т.к. «16 сентября 1492 г., когда над океаном взошло солнце, моряки эскадры Колумба увидели море, до горизонта покрытое водорослями». Саргассовым же оно было названо потому, что водоросли со множеством шаровидных образований напоминали виноградные грозди (португальское слово «саргасо» означает сорт мелкого винограда). Первоначально считали, что саргассы – это оторванные от берегов прибрежные водоросли, унесенные течением. Но исследования показали, что водоросли Саргассового моря значительно отличаются от обитателей прибрежных вод Америки, Африки и Европы. Отличаются и живущие среди плавающих саргас различные виды червей, рачков, крабов и рыб. Есть предположение, что плавающие саргассы и обитающие среди них животные произошли от предков, живших на побережье легендарной Атлантиды.

Водоросли – наиболее «урожайные» растения на Земле. За год они (микро- и макрофиты) производят продукции по крайней мере в 10 раз больше, чем наземная флора! Продукция же только макроводорослей составляет 150 т зеленой массы с 1 га. А в прибрежных водах Мурмана эта цифра для ламинарий, фукусов и др. водорослей достигает в среднем даже 200 т с 1 га! Суточный же прирост крупных водорослей – 30-50 г на 1 кг. И эти цифры мы должны воспринимать не как отвлеченные, а как имеющие самое непосредственное отношение к нашей (каждого индивидуально и общества в целом) жизни. Ведь водоросли – живая аптека, о которой знали наши далекие предки. Мы же – дети технического прогресса (и химии) – напрочь забыли об этом.

Одна старинная легенда повествует о том, как герой древнего Шумера Гильгамеш еще более 3000 лет тому назад пытался найти волшебную траву жизни, делающую человека бессмертным. Он нашел ее на дне моря, но, к сожалению, ему не удалось сберечь ее. Древние греки подметили, что у сражающихся в море раны заживали быстрее, чем у сражавшихся на суше. В Китае, где искусство врачевания морскими растениями насчитывает свыше 4000 лет, водоросли с успехом применяют для лечения нарывов, водянки, зоба, сосудистых заболеваний.

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров.

Красные водоросли — до 268 метров.

Спектральные компоненты солнечного света пронизывают воду на разную глубину.

Красные лучи проникают лишь в верхние слои, а синие - значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

хлорофилл .

Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

фикоэритрина , характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых.

В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Пигменты требуются для фотосинтеза. Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений.

Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль.

Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты.

А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов.

Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин.

На этот факт нам как раз и указывает его зеленый цвет. Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т.е.

как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное.

Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством».

Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции.

Но Силой Инерции могут обладать лишь движущиеся фотоны.

И это еще не все объяснение.

Также как любое небесное тело – это последовательность слоев химических элементов. Т.е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе.

Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами.

А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Повторим –

Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые.

Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные. Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания.

У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются. И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов.

Диффузное движение — это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т.е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела. При этом сохраняется инерционный компонент их движения.

Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет.

Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии.

Фотоны красного цвета слабо поглощаются средой, в которой движутся.

Причина – их Поля Отталкивания в состоянии покоя. Из-за этого у них велика Сила Инерции. Стакиваясь с химическими элементами, они с большей вероятностью отскакивают, нежели притягиваются.

Именно поэтому меньшее число красных фотонов проникает в водную толщу по сравнению с фотонами других цветов. Они отражаются.

Сделаем вывод.

Что касается цветов, то

Дата публикования: 2015-01-15; Прочитано: 5097 | Нарушение авторского права страницы

ПОЧЕМУ ЛУЧИ СИНЕЙ ЧАСТИ СПЕКТРА ДОСТИГАЮТ БОЛЬШИХ ГЛУБИН, НЕЖЕЛИ КРАСНОЙ?

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров.

Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли — до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие - значительно глубже.

Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности?

Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл . Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина , характеризующегося красным цветом.

Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза.

Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа.

Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра.

Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами.

И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты.

Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т.е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу.

А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов. Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета.

К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет.

Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением.

Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т.е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное.

Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру.

К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы.

Они проходят транзитом – от периферии небесного тела к его центру. Т.е. состав поверхностных слоев любого химического элемента постоянно обновляется.

Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела.

В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных.

Также как любое небесное тело – это последовательность слоев химических элементов. Т.е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы.

А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет.

А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно.

Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые. Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные.

Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания. У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются.

И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов.

И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого-то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Фотоны проникают в толщу воды, двигаясь либо диффузно, либо прямолинейно.

Диффузное движение — это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т.е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела.

При этом сохраняется инерционный компонент их движения. Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет. Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии.

Поскольку аналогия между небесными телами и элементами полнейшая. Фотоны скользят в этих «газовых оболочках», постоянно сталкиваясь друг с другом, притягиваясь и отталкиваясь – т.е. ведут себя в точности как газы атмосферы Земли.

Таким образом, фотоны движутся вследствие действия в них двух Сил – Инерции и Притяжения (к центру небесного тела и к элементам, в среде которых они движутся).

В каждый момент времени движения любого фотона, чтобы узнать направление и величину суммарной силы, следует пользоваться Правилом Параллелограмма.

Фотоны красного цвета слабо поглощаются средой, в которой движутся. Причина – их Поля Отталкивания в состоянии покоя. Из-за этого у них велика Сила Инерции. Стакиваясь с химическими элементами, они с большей вероятностью отскакивают, нежели притягиваются. Именно поэтому меньшее число красных фотонов проникает в водную толщу по сравнению с фотонами других цветов.

Они отражаются.

Фотоны синего цвета, напротив, способны проникать глубже фотонов других цветов. Их Сила Инерции наименьшая. При столкновении с химическими элементами они тормозятся – их Сила Инерции уменьшается. Они тормозятся и притягиваются элементами – поглощаются. Именно это – поглощение вместо отражения – позволяет большему числу синих фотонов проникать вглубь водной толщи.

Сделаем вывод.

В альгологии неверно используется для объяснения зависимости между цветом пигментов и глубиной обитания верно подмеченный факт – разная способность проникать в водную толщу фотонов разного цвета.

Что касается цветов, то вещества, окрашенные в красный, обладают большей массой (притягивают сильнее), нежели вещества, окрашенные в любой другой цвет.

Вещества, окрашенные в фиолетовый, обладают наименьшей массой (наименьшим притяжением).

Дата публикования: 2015-01-15; Прочитано: 5098 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

лород окисляет отмершие органические остатки до минеральных веществ, что также улучшает качество воды. В этом важном процессе самоочищения воды и состоит санитарная функция эвглены зеленой в пресных водоемах.

5. Сравните размножение хлореллы и эвглены зеленой. Какой тип размножения отсутствует у этих водорослей?

Как указывалось в ответе на вопрос 2 этого параграфа, хлорелла и эвглена зеленая размножаются только бесполым способом путем деления клетки надвое.

Половое размножение у этих водорослей отсутствует.

Колониальные водоросли

1. Объясните понятие «колониальная водоросль».

Колония водорослей - это совокупность одноклеточных особей одного вида, находящихся в непосредственной близости между собой.

Удерживаются особи в колонии разными способами: выделяемым ими слизистым секретом либо цитоплазматическими тяжами, образуемыми между поделившимися водорослями. Клетки водорослей могут также соединяться клеточными стенками, удерживаясь вместе.

Какие бывают колонии? Почему вольвокс относится к колониальным водорослям?

Колонии одних видов водорослей могут состоять из разного количества клеток, увеличиваясь по мере их деления (мелозира). Другие виды колониальных водорослей имеют строго определенное и постоянное количество особей в колонии (водяная сеточка, вольвокс).

Так, например, колонии разных видов вольвокса могут состоять от 500 до нескольких десятков тысяч особей.

3. Каковы особенности строения колонии вольвокса?

Вольвокс развивается в стоячих пресных водоемах.

Он представляет собой слизистый зеленоватый шар диаметром 1-2 мм. Клетки колонии расположены в один слой и погружены в наружный слой слизистого шара. Отдельные особи колонии по строению схожи с эвгленой зеленой, но в отличие от нее имеют

Водоросли – особая часть растительного мира. Особенность в среде обитания – преимущественно водоросли, относящиеся к низшим растениям, живут в воде. Корня, стебля, листьев, в привычном их понимании, у них нет, но есть тело (слоевище), состоящее либо из одной клетки, либо из группы многоклеточных организмов. Обитают водные растения в больших, и не очень больших, водоемах, и среди них встречаются самые необычные экземпляры, вызывающие удивление своими размерами и особенностями строения.

Разнообразный мир водорослей

Растения, живущие на Земле, играют немаловажную роль в жизни планеты – поглощают углекислый газ, являются источником питания для человека и животного мира. Водоросли тоже потребляют углекислый газ, перерабатывая его в кислород, ими питается животный мир водоемов и человек.

Какие-то виды можно встретить только на морском или океаническом дне, какие-то – только в пресных водоемах, какие-то мы увидим, а какие-то можем и не заметить. Среди многообразия водорослей есть очень необычные и интересные виды, вызывающие неподдельный интерес своей уникальностью.

В японском озере Мивант, исландском вулканическом озере Акан, в Тасмановом и Черном море встречаются необычные по форме водоросли – мосс-шары.

Они представляют собой образования шаровидной формы яркой зеленой окраски небольших размеров (диаметр 12-30см). Иногда их размер совсем маленький – на него влияет температура воды.

Справка! Шар образуют тонкие длинные нити растений, растущих из центра во все стороны.

Те, кто занимается подводным плаванием, отметили, что на дне моря водоросли-шары смотрятся как что-то чужеродное и фантастическое – настолько непривычно видеть такую форму на больших глубинах. Иногда в непогоду шаровые водоросли выбрасывает на побережье и тогда ими могут любоваться все, а не только любители подводных пейзажей.

Каулерпа относится к одноклеточным организмам, хотя по внешнему виду этого не скажешь – выглядит она как причудливое, внушительных размеров, растение с прообразами стеблей, корней и листьев. Объяснение этому несоответствию есть – клетка одна, а ядер несколько, к тому же, цитоплазма свободно может перемещаться по организму, лишенному перегородок.

Водоросль каулерпу называют растением-захватчиком, поскольку она быстро занимает водное пространство, заселяет его и мешает росту и развитию других растений.

На заметку! Скорость роста водоросли – до 1см в сутки, а длина некоторых видов достигает 2,8м.

В 1984 году необычная водоросль из аквариума попала в воды Средиземного моря недалеко от Монако, быстро приноровилась к новым условиям и спустя 10 лет ею была занята большая площадь в 30км². Вкус у водоросли горький, рыбам не нравится, поэтому они предпочитают питаться другими разновидностями. Так что размножению каулерпы ничего не мешает. Но вот популяции некоторых видов рыб ее присутствие вредит – они просто перестают жить в этих местах.

Возле берегов Калифорнии и на австралийском побережье (Новый Южный Уэльс) в 2000 году обнаружили каулерпу и в срочном порядке занялись ее уничтожением с помощью хлора – иначе водоросль могла бы захватить большую территорию. В Калифорнии ее запретили использовать даже в аквариумах.

У водоросли-захватчика есть опасный для нее враг, но обитает он только в теплых водах – это тропический морской слизняк Elysia subornata. Сок каулерпы отлично подходит ему для питания, и зарослям каулерпы слизняк наносит значительный ущерб. Для борьбы с опасной водорослью его вполне можно использовать там, где условия для него приемлемы.

Наличие в составе растения большого количества пигмента бурого цвета – фукоксантина и дало название водоросли. Необычного цвета водоросль обитает во многих морях и океанах, а несколько видов существуют даже в пресной воде.

На территории Мирового океана, примыкающей к материковой суше, одна из самых длинных водорослей, растет на больших глубинах — 40- 60 м, а в умеренных и приполярных широтах глубина обитания меньше – 6-15 м.

Особенности бурой водоросли:

  • крепится к камням и скалам, а в глубине, где воды спокойные, может расти на раковинах моллюсков;
  • может обитать в солончаковых болотах;
  • размер слоевища варьируется от 1 микрона до 40-60м;
  • слоевище может быть в форме вертикально направленных или стелющихся нитей, пластинок, корочек, мешков, кустиков;
  • чтобы удерживаться в вертикальном положении на слоевище есть пузырьки с воздухом;
  • водоросль рода Macrocystis, представитель самых длинных водорослей в мире (вырастает до 60м), образует подводные леса в прибрежных океанических водах Америки;
  • размножается вегетативным, бесполым и половым путем;
  • применяют в пищу как низкокалорийный продукт, богатый белками, углеводами, минералами;
  • служит сырьем для некоторых лекарственных препаратов и различных отраслей промышленности (текстильная, биотехнологическая, пищевая);
  • является основой пищевой приправы глутамат натрия.

Саргассовы водоросли (саргассум, саргасс, морской виноград) принадлежат к роду бурых водорослей и удивительны по своим особенностям и свойствам. Родина культуры – это регион Японии, Китая, Кореи, но в данное время она заселила воды тихоокеанского побережья североамериканского континента и Западной Европы.

На заметку! Отличительная особенность водоросли – наличие пузырьков-поплавков и характерная коричнево-желтая или коричнево-оливковая окраска зубчатых листьев до 2 см длиной.

Особенности саргассума:

  • обитает длинная водоросль (длина достигает 2-10м) на глубине 2-3м, но встречаются виды и на большей глубине – это зависит от места обитания;
  • обычно крепится к камням, скалам, но может и плавать;
  • необходимые условия для существования водоросли – соленая вода (7-34 промиле) и температура 10°-30°С;
  • присутствуют мужские и женские половые органы;
  • растение до 2м в высоту производит (в среднем) около 1млрд эмбрионов;
  • эмбрионы могут прицепляться к различным поверхностям, находиться в свободном плавании до 3-х месяцев и образовывать колонии вдали от родного места;
  • в Саргассовом море обитает разновидность без половых органов, образующая густую бесформенную массу на поверхности;
  • колонии водорослей, оторвавшись, могут мигрировать и наносят вред рыбакам, небольшим суднам, фауне и флоре водоема, вытесняя местные растения;
  • быстрые темпы размножения могут вытеснить другие разновидности водорослей;
  • польза водорослей — 9 видов грибов, 52 разновидности водорослей, около 80 видов морских организмов живут в местах обитания водоросли.

Макроцистис – самая большая и самая длинная водоросль

Макроцистис относится к роду бурых водорослей, отличающемуся большими размерами своих представителей. Место произрастания – океанические воды Южного полушария с температурой 20°С.

Листовые пластины длинные (до 1м) и широкие (до 20см), с воздушным пузырем у основания, крепятся к длинному стволу, а он, в свою очередь, намертво крепится к грунту, скалам, камням с помощью ризоидов (что-то наподобие корней) на глубине 20-30м. Внешний вид водоросли напоминает воздушного змея с длинным хвостом, унизанным флажками.

Интересно! По поводу длины макроциста есть некоторые расхождения, но все же, большинство сходится на длине 60-213 м. Вес слоевища у самых длинных представителей немалый – 150 кг, и этот факт споров не вызывает.

В толще воды стебель поднимается вверх, а у поверхности стелется вдоль направления морского течения. Держаться на плаву помогают пузырьки воздуха в основании листьев.

Обширные заросли макроциста вблизи побережий способны гасить сильные волны, поскольку оторвать растение от крепления невозможно, поэтому водоросли начали выращивать искусственно. Кроме этого, они служат сырьем для добычи альгината, необходимого во многих отраслях промышленности.

Самое большое морское растение – посидония океаническая

Обнаружили самую большую и длинную морскую траву посидонию в 2006 году в средиземноморских водах неподалеку от Балеарских островов. Почему самую длинную? Ответ поражает и удивляет – длина ее достигла 8 000 м!

Важно! Довольно часто посидонию называют «водоросль», но растение не относится к водорослям – это многолетнее растение, полностью находящееся в воде, имеет, в отличие от водорослей, корни, стебель, листья, семена и плоды.

Имя греческого бога Посейдона (повелитель морей) легло в основу названия травянистого морского растения посидония, видимо, из-за больших размеров и некоторых особенностей:

  • образует большие заросли (колонии) на глубинах до 50 м – их иногда называют зелеными лугами;
  • у растения очень мощные ползучие корни;
  • на большой глубине листья шире и длиннее, чем на небольшой;
  • длина листа достигает 15-50 см, а ширина – 6-10 мм;
  • в некоторых случаях ее специально выращивают для пополнения растительного мира в определенных морских районах.

Красные водоросли (багрянка) – морские растения, существующие на Земле около 1 миллиарда лет. Отличительной особенностью необычных водорослей является способность использовать для фотосинтеза лучи синего и зеленого цвета, проникающие на большую глубину. Обусловлено это свойство наличием особого вещества фикоэритина.

В хлоропластах красных водорослей содержится зеленый хлорофилл, красные фикоэритрины, синие фикобиллины и желтые каротиноиды. При смешивании веществ с хлорофиллом получаются различные оттенки красного цвета. Наличие этих компонентов делает возможным существование водоросли на большой глубине (100-500 м).

Интересный факт! В толще воды водоросли, поглощая свет солнца, кажутся черными, а на суше мы их видим красными!

Некоторые виды багрянки содержат магния и углекислого кальция в большом количестве и способны образовывать скелет особого состава, поэтому багрянка входит в состав коралловых рифов.

Красные водоросли служат сырьем в производстве натурального заменителя желатина агар-агара, используются в косметологии и фармакологии, ими удобряют почву и кормят скот.

В растительном мире встречаются удивительные и необычные растения, питающиеся себе подобными или мелкими живыми организмами. Их называют растения-хищники. Есть такие и среди водорослей.

Одноклеточный организм Pfiesteria piscicida способен питаться как растение и как животное: может напасть на живой организм и одновременно использует процесс фотосинтеза для получения питательных веществ. Поэтому – то его и считают водорослью.

Интересные факты:

  • необычная водоросль-хищник погубила большое количество рыбы в водах восточного побережья США – каждая особь уничтожает 7-10 клеток гемоглобина в крови рыб, быстро размножается;

Вся поверхность океана - зеленое царство планктона. У морских берегов умеренного пояса скалы и камни обрастают различными одноклеточными водорослями и длинными зелеными нитями - нитчатками. Чуть подальше волнуются великолепные густые заросли. Курчавится обильной зеленью ульва-салат, иногда фиолетового с переливами цвета. С ним переплетаются чьи-то яркие карминовые ветки.

Вот из глубины тянутся длиннейшей и удивительно крепкой бечевой стебли ламинарий. Нижним концом, расширенным в виде многочисленных присосок, они стоят как на якоре, прикрепившись ко дну, скалам, камням, раковинам. Гибкие стебли в 1 сантиметр толщиной выносят к поверхности листья - пластины в 1,5 и более метра длиной. У основания листа большие вздутия, наполненные воздухом. При помощи этих плавательных пузырей водоросль держится на воде. Со дна поднимается странное растение - один лист! Листовая пластинка в 2-4 метра длиной, на черешке примерно такой же длины, зацепившемся присоском за дно моря. Ни стебля, ни корня. Это тоже ламинария, но другого вида - ламинария сахарная. А вот еще одна ламинария: на тонком черешке веером поднимается к свету пальчаторассеченная пластинка оригинального оливкового оттенка.

В подводном лесу формы растительности своей необычайностью заставляют забыть, что все они - водоросли. Нет у них листьев, стеблей и корней. А кажется, что перед нами растения со всеми этими органами.

В самом деле, разве не пальмы эти деревья в три метра высотой и стволом около десяти сантиметров толщиной? У них раскидистая крона, каждая ветка с одним длинным узким листом - целый лес из пальм под морской волной. И все-таки опять это лес из древовидных водорослей - лессоний, - только по внешнему виду напоминающий пальмовый.

Ламинарии относятся к бурым водорослям, имеющим пигменты, кроме зеленого - хлорофилла, и другие - бурые. Ламинарии замечательны тем, что у них происходит ежегодный листопад: сменяются листовые пластины, а черешки и стебли многолетние. В наших северных морях листопад в подводном ламинариевом лесу начинается во второй половине ноября.

В южных морях богатства подводных лесов напоминают наземные леса тропических областей. И первое место в них принадлежит ламинарии под названием макроцистис. По длине она превосходит самые высокие деревья на Земле. Поднимаясь до дна моря под острым углом, ее ствол разрастается до 300 метров в длину. Голый в нижней части, он несет множество узких листьев, каждый с одним наполненным воздухом пузырем у основания. И вся листовидная часть плавает в воде, добираясь до поверхности ее, где образует густые плавучие заросли и даже чащи. Эта водоросль так прочно держится за дно своими ризоидами - разветвлениями в виде корней нижней части ствола, - что не боится самых сильных бурь Западного океана, а им «не может противостоять никакая скала, - пишет Ч. Дарвин, - как бы крепка она ни была».

Каждая такая водоросль дает приют множеству живых существ. На ее пластинах кораллы возводят свои изящные постройки. С ними конкурируют всевозможные моллюски, которые также претендуют на уютное местечко в зарослях ламинарий.

«Бесчисленные ракообразные сидят на всех частях растения. Если встряхнуть корни, - продолжает Ч. Дарвин, - из них посыплется целая куча мелкой рыбешки, моллюски, каракатица, всякого рода раки, морские ежи, морская звезда, прекрасные голотурии, планарии и ползающие нереиды огромного множества форм».

Дарвин говорит, что для этих обширных подводных лесов он находит возможным лишь одно сравнение: с лесами тропических областей. «И все-таки если бы в какой-нибудь стране уничтожить лес, то не думаю, - заключает он, - чтобы при этом погибло хотя бы приблизительно такое количество видов животных, как с уничтожением этой водоросли».

Подводные леса из ламинарий спасли не одно морское судно от крушения, образуя естественные плавучие волнорезы или хорошие подушки у скал и рифов. Из крупных ламинариевых водорослей состоят подводные леса по побережью Северной Америки, у южной оконечности Америки, у нас - по побережью Камчатки.

Среди ламинариевых лесов встречаются и более низкорослые, до 1 метра в вышину, но очень густые. У нас на севере они занимают береговую зону, свободную от воды во время отлива. А уже глубже начинаются более высокие леса, не обнажаемые при отливе.

Низкорослые леса обычно образует бурая водоросль - фукус. От короткого черешка, прикрепившегося к камням, идет темно-бурая плоская лента, вильчато разветвленная. По середине ленты Тянется продольная жилка. Много шнуровидных бурых водорослей, но есть и кустистые формы. Они встречаются обычно вперемежку с фукусом и другими ламинариями.

В Атлантическом океане, на восток от Антильских островов, огромное пространство, известное под названием Саргассова моря, занято плавучими бурыми водорослями. По внешнему виду можно принять эти водоросли за высшие растения. Цилиндрический разветвленный стебель. На нем сидят узкие листья со средней жилкой. Ветви сильно укорочены и живо напоминают соцветия. Часть веточек совсем короткие, наверху раздутые в шарики - пузыри с воздухом, очень похожи на ягоды. Один из видов саргасса назвали морским виноградом, или плывучкой ягодоносной.

Но это растения западных берегов Африки и восточных американских. Морскими течениями их отрывает от коренных мест произрастания и несет в более спокойный участок океана. От Западной Индии к Северному Ледовитому океану движется течение Гольфстрим, а от Африки к Америке, поперек Атлантического океана, направляется экваториальное течение.

Саргассово море лежит примерно между островами Азорскими, Канарскими и Зеленого Мыса (20°-40° северной широты и 70°-30° восточной долготы). О нем знали уже древние мореплаватели. За Геркулесовыми Столбами (так называли Гибралтарский пролив) находится, говорили финикияне, студенистое море, где вязнут корабли.

Действительно, эти плавучие леса - серьезное препятствие на пути кораблей. Когда-то они послужили причиной бунта матросов против Колумба, когда его суда попали в заросли морского винограда. Масса водорослей казалась такой плотной, что матросов охватил ужас: как же продираться через такую чащу дальше? Им грозит гибель, и они требовали возвращения. Плотность саргассовых скоплений так велика, что издали они похожи на острова, на мели.

В Саргассовом море глубина едва превышает 2 километра и лишь местами доходит до 5-6 километров. В массе размножающиеся водоросли плавают в нем у поверхности.

В Атлантическом океане известно еще одно, хотя и меньшее, скопление - между Багамскими и Бермудскими островами. Есть оно и в Тихом океане, у берегов Калифорнии. Чтобы представить себе, как велики эти скопления бурых водорослей, достаточно сказать, что они занимают пространство в семь раз больше Франции!

На больших глубинах растут красные водоросли - багрянки. Их можно встретить в наших северных, южных и дальневосточных морях. Некоторые багрянки отлично распространяются в неглубоких средних зонах. Они стелются у подножия подводных лесов из крупных водорослей, подобно лишайникам и мхам в наших северных наземных лесах. Обычно это небольшие нежные кустики всего нескольких сантиметров в вышину. Они то прелестных розовых тонов, то вдруг перемежаются темно-малиновыми кустиками, почти черными, то одеты в пурпур. Одни отливают синевой или матовой зеленью, других словно солнечный луч позолотил, и они зажелтели.

В глубоких зонах северных морей дно покрывают ярко-красные кустики багрянок, которые трудно не посчитать за высшие растения. На веточках у них как будто настоящие листья с сетью жилок. Но и это растение - делессерия - тоже водоросль.

Есть багрянки, похожие на красные пластинки, прикрепленные к земле основанием. Иногда это только неветвящиеся нити, иногда узкие ленты. Среди таких подножных кустистых лесов выделяются своеобразные багрянки - камнекусты. Так называют их за способность пропитываться известью. На вид они очень похожи на кораллы: ярко-розовые твердые кустики.

Водоросли прикрепленные обитают в сравнительно неширокой прибрежной полосе. Ее площадь определяют примерно в 1/10 долю всей площади Мирового океана.

Одну десятую! Но жизнь разлита на площади всего Мирового океана, и не только в верхних слоях, но и на огромной глубине. Теперь известно, что на самых больших глубинах (10000 метров), в царстве вечной черной ночи, где держится ровная низкая температура около + 2° и воды недвижны, есть жизнь.

Морское илистое дно усеяно корненожками, губками, актиниями, полипами. Среди построек кораллов копошатся черви, усоногие раки, моллюски. Проплывают громадные рыбы, светящие в темноте зеленым, синим, фиолетовым, красным светом; в огромной пасти торчат хватательные зубы; под пастью - подглоточный мешок. Гроза этих мест! Множество головоногих моллюсков - тоже хищники. Нежные щупальца актиний всегда настороже.

Корненожки, голотурии из иглокожих и некоторые другие беспозвоночные довольствуются илом на обед. Многие из обитателей морских глубин ждут милости от жителей верхних этажей в виде дождя из трупов погибших животных, экскрементов живых. Ну и, конечно, на глубинах кипит, как и на земле, прямая схватка между хищниками. Одни пожирают других. И весь этот огромный подводный мир, поражающий своеобразием форм, размеров, красок, во многом еще загадочный и незнаемый, обязан своим существованием и расцветом зеленым водорослям. С ними он составляет громадную общину, связанную вечными жизненными узами.

Сложная и длинная цепь питания. Конец ее опущен на дно океана, и звено за звеном, бесконечно петляя по пути от одних живых существ к другим, она восходит к верхним слоям Мирового океана.

Здесь раскинута скатерть-самобранка! Безбрежная синяя скатерть с золотыми зайчиками. Они прыгают и резвятся в воде, глубоко пронизывают толщи ее, играют собственным отражением. А мириады еле видимых невооруженным глазом водорослей без промаха ловят зайчиков своим крошечным телом и совершают великую космическую работу зеленого растения. Они - созидатели органического вещества, первопищи для всех обитателей океана.

На скатерти-самобранке берет начало великая цепь питания в морях. Микроскопические водоросли служат пищей микроскопическим животным, вместе с ними образуя население верхних слоев - планктон толщиною в сто, а иногда и более, метров.

Никто не называет этих малюток «лесом», хотя все соглашаются, что ламинарии образуют подводные леса. Но ведь в конечном счете кормят морских животных все-таки не ламинарии, а одноклеточные и колониальные зеленые водоросли планктона.

Даже в холодных морях, например в Баренцевом море, в 1 м3 воды верхних слоев их содержится до тридцати миллионов особей, а в теплых - еще больше.

Дарвин во время своего кругосветного путешествия живо заинтересовался планктонными водорослями, которые он в изобилии встретил у бразильских берегов. «Вся поверхность воды, как показало исследование под лупой, была покрыта как бы кусочками мелко искрошенного сена с зазубренными кончиками». Они имели цилиндрическую форму и были собраны в кучки от двадцати до шестидесяти штук в каждой. «Их, должно быть, бесчисленное множество: наш корабль проходил через несколько полос этих водорослей, - рассказывает Дарвин, - одна из которых занимала в ширину около десяти ярдов и в длину, судя по грязноватому цвету воды, тянулась, по крайней мере, на две с половиной мили».

Крошечные водоросли размножаются с неимоверной быстротой. Неудивительно поэтому, что планктонные водоросли славятся своими урожаями, как можно назвать их годовую продукцию. Ее определяют в триста миллиардов тонн.

В списке самых урожайных водорослей стоит первой хлорелла. Это зеленое чудо дает урожай в четырнадцать раз больше, чем, например, пшеница. Она содержит 50% белков, а в пшенице их всего 12%. Потому-то именно биологи и считают, что хлорелла - первый кандидат в спутники космонавта для дальних полетов. Планктонные водоросли - первопища всего живого в Мировом океане, скатерть-самобранка для тех, кто лишен хлорофилла, без которого океан был бы мертвой пустыней.

Одни из них непосредственно поедают водоросли, другие подбирают продукты их разложения, третьи пожирают животных, питающихся водорослями. Медленно опускается с богатого стола из верхних слоев органический дождь. По пути его подхватывают, отнимают друг от друга и обитатели средних вод, в свою очередь потом опускаясь глубже питательным ручейком еще для кого-то. А остатками от стола займутся бактерии и доведут дело до конца - до минеральных составных частей.

Вместе с тем они положат начало новому кругу жизни: минеральные вещества растворятся в воде, и их подхватят водоросли - те самые, что охотятся за солнечными зайчиками. Так совершается вечный ход жизни, вечный круговорот веществ в воде. И заглавную космическую роль в нем играют водоросли планктона.

Основные факторы, влияющие на распространение и развитие водорослей

Водоросли - фотоавтотрофные организмы. Ведущими факторами, влияющими на их развитие, являются свет, температура, наличие капельно-жидкой воды, а также источников углерода, минеральных и органических веществ. Водоросли, как и другие растения, заселяют почти все возможные местообитания в гидросфере, атмосфере и литосфере Земли. Их можно встретить в воде, в почве и на ее поверхности, на коре деревьев, стенах деревянных и каменных построек и даже в таких негостеприимных местообитаниях, как пустыни и фирновые поля.

Факторы, влияющие на развитие водорослей, подразделяют на абиотические, не связанные с деятельностью живых организмов, и биотические, обусловленные такой деятельностью. Многие факторы, особенно абиотические, являются лимитирующими, т. е. способны ограничивать развитие водорослей. В водных экосистемах к лимитирующим факторам относятся: температура, прозрачность, наличие течения, концентрация кислорода, углекислого газа, солей, а также биогенных веществ. В наземных местообитаниях среди основных лимитирующих факторов следует выделить климатические - температуру, влажность, свет и т. д., а также состав и строение субстрата.

Абиотические факторы

К абиотическим факторам относятся: температура, свет, физические и хими­ческие свойства воды и субстрата, состояние и состав воздушных масс (что особенно важно для аэрофитных водорослей, живущих вне водных условий) и некоторые другие.

Всю совокупность абиотических факторов можно, с известной долей условности, разделить на химические и физические.

Химические факторы

Вода, как лимитирующий фактор . Большую часть клетки водорослей составляет вода. Цитоплазма в среднем содержит 85-90 % воды, и даже такие богатые липидам и клеточные органеллы, как хлоропласты и митохондрии, содержат не менее 50 % воды. Вода в растительной клетке существует в двух формах: конституционная вода, связанная водородными связями со структурами макромолекул, и резервная вода, не связанная, как правило, содержащаяся в вакуолях. В резервной воде обычно растворены сахара, различные органические кислоты и т. п., вследствие чего она может участвовать в стабилизации внутриклеточного осмотического давления. При полимеризации высокоактивных мелких молекул в макромолекулы (например, при превращении сахаров в крахмал) и при обратном процессе - гидролизе высокомолекулярных соединений, осмотическое давление в клетке способно быстро изменяться. Этот механизм обеспечивает устойчивость отдельных видов водорослей к высыханию и к резким колебаниям солености воды.

Для большинства водорослей вода - постоянная среда обитания, однако многие водоросли могут жить и вне воды. По устойчивости к высыханию, среди обитающих на суше растений выделяют (по Вальтеру) пойкилогидрические,- не способные поддерживать постоянное содержание воды в тканях, и гомойогидршеские - способные поддерживать постоянную гидратацию тканей. У пойкилогидрических растений (синезеленые и некоторые зеленые водоросли) клетки при высыхании сжимаются без необратимого изменения ультраструктуры и, следовательно, не теряют жизнеспособности. При увлажнении они возобновляют нормальный метаболизм. Минимальная влажность, при которой возможна нормальная жизнедеятельность таких растений, различна. Ее значение предопределяет, в частности, распространение аэрофитов. Для гомойогидрических растений обязательно наличие крупной центральной вакуоли, с помощью которой стабилизируется водный запас клетки. Однако клетки с крупными вакуолями в значительной степени утрачивают способность к высыханию. К гомойогидрическим водорослям относятся, например, некоторые аэрофиты из зеленых и желтозеленых "водорослей, обычно поселяющиеся в условиях постоянной избыточной увлажненности.

Соленость и минеральный состав воды . Это важнейшие лимитирующие факторы, влияющие на распределение водорослей. Согласно международной классификации основную массу природных водоемов составляют морские - эвгалинные, со средней соленостью 35 ‰). Среди континентальных водоемов преобладают пресноводные - агалинные, минерализация которых не превышает обычно 0,5 (среди них встречаются и более минерализованные). Континентальные водоемы, объединяемые под названием минерализованные, очень разнообразны по степени минерализации: это и солоноватые, или миксогалинные, среди которых выделяют олигогалинные (с соленостью 0,5-5 ‰), мезогалинные (5- 18 ‰) и полигалинные (18-30 ‰), а также эвгалинные (30-40 ‰) и ультрагалинные (не менее 40 ‰)- Среди ультрагалинных нередко выделяют крайне засоленные - гипергалинные водоемы, концентрация солей в которых близка к предельной. Различны континентальные водоемы и по характеру минерализации. Среди них выделяют гидрокарбонатные, сульфатные и хлоридные водоемы, которые в зависимости от степени и характера минерализации подразделяют на группы и типы.

В соответствии с упомянутыми классификациями водоемов и в зависимости от солеустойчивости водорослей, среди них выделяют олигогалинные, мезогалинные, эвгалинные, ультрагалинные, пресноводные и другие виды. Видовое богатство (численность видов) тесно связано с соленостью воды.

Практически в каждом из отделов можно найти виды, способные обитать в условиях крайнего засоления, и виды, живущие в водоемах с очень низкой минерализацией. Так, синезеленые водоросли - в подавляющем большинстве пресноводные организмы, однако среди них есть виды, способные развиваться в ультрагалинных водоемах. Среди типично морских обитателей - золотистых водорослей порядка Кокколитофориды - встречаются виды, распространенные и в континентальных водоемах с крайне низкой минерализацией. Диатомовые водоросли в целом в равной степени распространены и в морских и в континентальных водоемах; они встречаются в условиях с различной соленостью. Однако конкретные виды диатомовых нередко развиваются только при определенной солености и столь чувствительны к ее изменениям, что могут быть использованы как индикаторные организмы.

Очень чувствительны к изменениям солености и бурые водоросли. Многие из них не могут расти даже при незначительном опреснении. Поэтому они бедно представлены в водах Балтийского моря со сравнительно низкой соленостью. Сходную зависимость от степени солености водоема обнаруживают и красные водоросли: в Средиземном море (соленость 37-39 ‰) обнаружено более 300 видов красных водорослей, в Черном (17-18 ‰) - 129, в Каспийском (10 ‰) - 22. Зеленые водоросли преимущественно пресноводные организмы, лишь 10 % из них встречаются в морях. Однако среди них имеются виды, способные выдерживать значительное засоление и даже вызывать «цветение» ультрагалинных водоемов (например, Dunaliella salina).

Таким образом, водорослям в целом свойственна очень широкая амплитуда солеустойчивости. Что касается конкретных видов, то лишь немногиеиз них способны существовать в водоемах с разной соленостью, т. е. большинство водорослей - стеногалинные виды. Эвригалинных видов, способных существовать при разной солености, сравнительно немного (например,Bangia, Enteromorpha, Dunaliella).

Кислотность воды . Этот фактор также имеет большое значение для жизнедеятельности водорослей. Устойчивость разных таксонов водорослей к изменениям кислотности (pH) столь же различна, как и к изменениям солености. По отношению к кислотности среды выделяют виды, живущие в щелочных водах - алкалифилы и, живущие в кислых водах, при низких значениях pH - ацидофилы. Ацидофилами, например, является большинство Desmidiales. Наибольшее видовое богатство десмидиевых водорослей наблюдается в эвтрофных и мезотрофных болотах, в условиях пониженной кислотности, однако некоторые десмидиевые могут встречаться и в щелочных водах с высокой минерализацией (например, Closterum acerosum). Харовые, наоборот, преимущественно алкалифилы. Их наибольшее видовое разнообразие наблюдается в слабощелочных водах, однако некоторые из них (Chara vulgaris) развиваются н в кислых водах, при pH 5,0.

Биогенные вещества . Наличие в среде макро- и микроэлементов, являющихся необходимыми компонентами тела водорослей, имеет решающее значение для интенсивности их развития.

Элементы и их соединения, относящиеся к макроэлементам (часто их называют макротрофными биогенными веществами), требуются организмам в сравнительно больших количествах. Особая роль среди них принадлежит азоту и фосфору. Азот входит в состав всех белковых молекул, а фосфор - обязательный компонент ядерного вещества, играющий значительную роль и в окислительно-восстановительных реакциях. Калий, кальций, сера и магний почти столь же необходимы, как азот и фосфор. Кальций в больших количествах используется морскими и пресноводными водорослями, отлагающими вокруг слоевищ «чехлы» из солей кальция (некоторые красные и харовые водоросли). Магний входит в состав хлорофилла, который является основным фотосинтезирующим пигментом водорослей большинства отделов.

Микроэлементы необходимы растениям в крайне малых количествах, но имеют огромное значение для их жизни, поскольку входят в состав многих жизненно важных ферментов. Причем, при небольшой потребности растений в микроэлементах их содержание в окружающей среде также незначительно. Микроэлементы нередко выступают как лимитирующие факторы. К ним относятся 10 элементов: железо, марганец, цинк, медь, бор, кремний, молибден, хлор, ванадий и кобальт. С физиологической точки зрения их можно разделить на три группы:

1) вещества, необходимые для фотосинтеза: марганец, железо, хлор, цинк и ванадий;

2) вещества, необходимые для азотного обмена: молибден, бор, кобальт, железо;

3) вещества, необходимые для других метаболических функций: марганец, бор, кобальт, медь и кремний.

Водоросли разных отделов имеют неодинаковые потребности в макро- и микроэлементах. Так, для нормального развития диатомовых водорослей необходимы довольно значительные количества кремния, который используется для постройки их панциря. При отсутствии или недостатке кремния панцири диатомовых истончаются, иногда до крайней степени.

Почти во всех пресноводных экосистемах к лимитирующим факторам относятся нитраты и фосфаты. В озерах и реках с мягкой водой к ним могут быть причислены также соли кальция и некоторые другие. В морских водоемах концентрация таких растворенных биогенных веществ, как нитраты, фосфаты и некоторые другие также низка, и они представляют собой лимитирующие факторы, в отличие от хлористого натрия и некоторых других солей. Низкие концентрации ряда биогенных веществ в морской воде, несмотря на то что они постоянно смываются в море, обусловлены тем, что время их жизни в растворенном состоянии довольно непродолжи­тельно.

Физические факторы

Свет . Солнечное излучение имеет в жизни растений не меньшее значение, чем вода. Свет необходим растению как источник энергии фотохимических реакций и как регулятор развития. Его избыток, равно как и недостаток, может быть причиной серьезных нарушений развития водорослей. Следовательно, свет также является лимитирующим фактором при максимальной и минимальной освещенности. Каждый зависимый от солнечного излучения процесс осуществляется при участии определенных воспринимающих структур - акцепторов, в роли которых обычно выступают пигменты хлоропластов водорослей.

Распределение водорослей в толще воды в значительной степени определяется наличием света, необходимого для нормального фотосинтеза. Вода поглощает солнечное излучение гораздо сильнее, чем атмосфера. Длинноволновые тепловые лучи поглощаются уже у самой поверхности воды, инфракрасные - проникают в глубину на несколько сантиметров, ультрафиолетовые - на несколько дециметров (до метра), фотосинтетически активное излучение (длина световой волны около 500 нм) проникает до глубины 200 м.

Световой режим водоема зависит:

1) от условий освещения над поверхностью воды;

2) от степени отражения света ее поверхностью (при высоком стоянии солнца гладкая водная поверхность отражает в среднем 6 % падающего света, при сильном волнении - около 10 %, при низком стоянии солнца отражение столь значительно увеличивается, что большая часть света уже нe проникает в воду: под водой день короче, чем на суше);

3) от степени поглощения и рассеивания лучей при прохождении через воду. С увеличением глубины освещенность резко убывает. Свет поглощается и рассеивается самой водой, растворенными веществами, взвешенными минеральными частицами, детритом и планктонными организмами. В мутных проточных водах уже на глубине 50 см освещенность такая же, как под пологом елового леса, где могут развиваться только самые теневыносливые виды высших растений, однако водоросли активно фотосинтезируют и на такой глубине. В прозрачных водах прикрепленные ко дну (бентосные) водоросли встречаются до глубины 30 м, а взвешенные в толще воды (планктонные) - до 140 м.

Слой воды выше границы обитания фотоавтотрофных организмов называется эвфотической зоной. В море граница эвфотической зоны обычно находится на глубине 60 м, изредка опускается до глубины 100-120 м, а в прозрачных водах океана - приблизительно до 140 м. В озерных, значительно менее прозрачных водах, граница этой зоны проходит на глубине 10-15 м, в наиболее прозрачных гляциальных и карстовых озерах - на глубине 20-30 м.

Оптимальные значения освещенности для разных видов водорослей варьируют в широких пределах. По отношению к свету выделяют гелиофильные и гелиофобные водоросли. Гелиофильные (светолюбивые) водоросли нуждаются в значительном количестве света для нормальной жизнедеятельности и фотосинтеза. К ним относится большинство синезеленых и значительное количество зеленых водорослей, обильно развивающихся в летнее время в поверхностных слоях воды. Гелиофобные (боящиеся, избегающие яркого света) водоросли приспособлены к условиям низкой освещенности. Например, большинство диатомовых водорослей избегает ярко освещенного поверхностного слоя воды и в малопрозрачных водах озер интенсивно развивается иа глубине 2-3 м, а в прозрачных водах морей - на глубине 10-15 м. Однако далеко не все водоросли, живущие в условиях избыточной освещенности, нуждаются в больших количествах света, т. е. являются подлинно гелиофильными. Так, Dunaliella salina - обитатель открытых соленых водоемов и Trentepohlia jolitus, живущая на открытых скалах в горах, способные накапливать масла с избытком каротина, очевидно, играющие защитную роль, по сути являются не светолюбивыми, а светоустойчивыми организмами.

У водорослей разных отделов в зависимости от состава пигментов - фоторецепторов , максимальная интенсивность фотосинтеза наблюдается при разной длине световых волн. В наземных условиях качественные характеристики света довольно постоянны, так же как интенсивность фотосинтеза. При прохождении через воду свет красной и синей области спектра поглощается и на глубину проникает зеленоватый свет, слабо воспринимаемый хлорофиллом. Поэтому там выживают в основном красные и бурые водоросли, имеющие дополнительные фотосинтезирующие пигменты (фикоцианы, фикоэритрины и пр.), способные использовать энергию зеленого света. Отсюда становится ясным огромное влияние света на вертикальное распределение водорослей в морях и океанах: в приповерхностных слоях, как правило, преобладают зеленые водоросли, глубже - бурые, и на наиболее глубоководных участках - красные. Однако подобная закономерность не является абсолютной. Многие водоросли способны существовать в условиях крайне низкой, не свойственной им, освещенности, а иногда и в полной темноте. При этом у них могут происходить определенные изменения в пигментном составе или в способе питания. Так, у синезеленых водорослей в условиях низкой освещенности пигментный состав может изменяться в сторону преобладания фикобилинов (фикоциана, фикоэритрина), цвет трихомов при этом меняется от синезелеиого к пурпурному. Представители многих отделов водорослей (например, Euglenophyta, Chrysophyta) способны при отсутствии света и избытке органических веществ переходить к сапротрофному способу питания.

Движение воды . Огромную роль в жизни водорослей, обитателей водных биотопов, играет движение воды. Абсолютно стоячей, неподвижной воды не существует, и следовательно, практически все водоросли - обитатели текучих вод. В любых континентальных и морских водоемах наблюдается относительное движение водорослей и водных масс, обеспечивающее приток питательных веществ и удаление продуктов жизнедеятельности водорослей. Только в особых крайних условиях водоросли окружены постоянным слоем воды - в толще льда, на поверхности почвы, в пустотах скал, на других растениях и пр. Движение воды в результате ветрового перемешивания наблюдается даже в небольших лужах. В крупных озерах существуют постоянные приливно-отливные течения, а также вертикальное перемешивание. В морях и океанах, образующих по сути единую водную систему, кроме приливно-отливных явлений и вертикального перемешивания, наблюдаются постоянные течения, имеющие огромное значение в жизни водорослей.

Температура . Диапазон температур, в котором может сохраняться жизнь, очень широк: -20 - +100 °С. Водоросли являются организмами, которым свойственны, пожалуй, наиболее широкие диапазоны температурной устойчивости. Они способны существовать в крайних температурных условиях - в горячих источниках, температура которых близка к точке кипения воды, и на поверхности льда и снега, где температуры колеблются около 0 °С.

По отношению к температурному фактору среди водорослей выделяют: эвритермные виды, существующие в широком температурном диапазоне (например, зеленые водоросли из порядка Oedogoniales, стерильные иити которых можно найти в мелких водоемах с ранней весны до поздней осени), и стенотермные, приспособленные к очень узким, иногда экстремальным температурным зонам. К стенотермным относятся, например, криофильные (холодолюбивые) водоросли, растущие только при температурах, близких к точке замерзания воды. На поверхности льда и снега можно встретить представителей различных таксонов водорослей: Desmidiales, Ulotrichales, Volvocales и др. В окрашенных снегах на Кавказе было обнаружено 55 видов водорослей, из которых 18 видов относились к зеленым, 10 - к сииеэеленым, 26 - к диатомовым и 1 вид - к красным. В водах Арктики и Антарктики найдено 80 видов криофильных диатомовых водорослей. Всего известно около 100 видов водорослей, способных активно вегетировать на поверхности льда и снега. Эти виды объединяет способность выдерживать замерзание без нарушений тонких клеточных структур, и затем, при оттаивании, быстро возобновлять вегетацию, используя минимальное количество теплоты.

Водоросли, как уже указывалось выше, нередко выдерживают и высокие температуры, поселяясь в горячих источниках, гейзерах, вулканических озерах, в водоемах-охладителях промышленных предприятий и пр. Такие виды называются термофильными. Предельные температуры, при которых удавалось находить термофильные водоросли, колеблются от 35 - 52 до 84 °С и выше. Среди термофильных водорослей можно обнаружить представителей различных отделов, но подавляющее большинство их относится к синезеленым . Всего в горячих источниках обнаружено более 200 видов водорослей, однако облигатно термофильных видов среди них сравнительно немного. Большинство водорослей, обнаруженных в горячих источниках, способны выдерживать высокие температуры, но обильнее развиваются в условиях обычных температур, т. е. по сути являются мезотермными видами. Действительно термофильными можно считать только два вида: Mastigocladus laminosus и Phormidium laminosum, массовое развитие которых происходит при температуре 45-50 °С. Основная масса водорослей в целом мезотермные организмы, но среди них всегда можно выделить более или менее термофильные, развивающиеся в определенных температурных диапазонах.

Отношение водорослей к температурному фактору влияет на их вертикальное распределение в водоемах. В различных водоемах и водотоках вследствие поглощения солнечного излучения верхними слоями воды прогреваются только эти слои. Теплая вода обладает меньшей плотностью, чем холодная, а вызываемые ветром течения выравнивают ее плотность только до определенной глубины. С началом вегетационного сезона, сезона интенсивного солнечного излучения, в достаточно глубоких континентальных непроточных водоемах возникает очень устойчивая температурная стратификация водных толщ. В этих водоемах образуются ограниченные друг от друга массы воды: теплый и легкий поверхностный слой - эпилимнион и лежащая под ним масса более холодной и плотной воды - гиполимнион. Осенью вода в водоеме охлаждается и температурная стратификация исчезает. В морях и океанах также имеется постоянный слой температурного скачка. Водоросли могут развиваться только в эпилимнионе (а именно в эвфотической зоне), причем наиболее теплолюбивые и светолюбивые организмы поселяются в поверхностных хорошо прогреваемых слоях воды.

Влияние температуры на водоросли, развивающиеся в водной среде, необычайно велико. Именно температура определяет их географическое распространение. Так, виды бурой водоросли рода Lessonia встречаются только в пределах летней изотермы 10° С, виды родов Laminaria, Agarum, Alaria не пересекают летней изотермы 20 °С, некоторые виды Sargassum обитают только при температуре 22-23 °С (Саргассово море). Даже в Балтийском море среди сообществ красных водорослей можно выделить менее теплолюбивые (Furcellaria, Delesseria, Dumontia), обитающие при температурах ниже 4 °С, и более теплолюбивые (Nemalion), обитающие при температурах выше 4 °С. В целом, за исключением широко распространенных эвритермных видов (например, некоторые Fucales), в распространении водорослей наблюдается географическая зональность: конкретные токсоны морских планктонных и бентосных водорослей приурочены к определенным географическим поясам. Так, крупные бурые водоросли (Macrocystis) доминируют в северных морях. По мере продвижения к югу все более заметную роль начинают играть красные водоросли, а бурые отходят на второй план. Отношение количества видов красных и бурых водорослей в арктических морях составляет 1,5, в проливе Ла-Манш - 2, в Средиземном море - 3, а у Атлантического побережья Центральной Америки - 4,6. Данное отношение является важной характеристикой зональной принадлежности бентической флоры.

Среди зеленых водорослей также известны более и менее теплолюбивые виды. Например, Caulerpa prolifera и Cladophoropsis fasciculatus приурочены к экваториальной зоне мирового океана, a Codium ritteri - к северным широтам.

Хорошо выражена географическая зональность и у морских планктонных водорослей. Для морского тропического фитопланктона характерно значительное видовое богатство при очень низкой продуктивности. В планктоне тропических вод черезвычайно богато представлены динофитовые и золотистые водоросли. Воды тропиков бедны диатомовыми водорослями, господствующими в северных морях.

Температурный фактор оказывает влияние и на вертикальное распределение морских планктонных и бентосных водорослей.

Вертикальный оптимум произрастания морских водорослей как правило определяется комплексным воздействием теплового и светового режимов. Известно, что с понижением температуры интенсивность дыхания растений ослабевает быстрее, чем интенсивность фотосинтеза. Момент, когда процессы дыхания и фотосинтеза уравновешивают друг друга называется компенсационной точкой. Условия, при которых устанавливается компенсационная точка являются оптимальными для развития конкретных видов водорослей. В северных широтах в связи с низкой температурой компенсационная точка устанавливается на бóльших глубинах, чем в южных. Таким образом, нередки случаи, когда одни и те же виды водорослей встречаются в северных широтах на больших глубинах, чем в южных.

Очевидно, что температура влияет на географическое распределение этих (и других) водорослей в первую очередь косвенным образом - ускоряя или замедляя темпы роста отдельных видов, что приводит к их вытеснению другими, растущими более интенсивно в данном температурном режиме.

Все перечисленные абиотические факторы действуют на развитие и распределение водорослей в комплексе, компенсируя или дополняя друг друга.

Биотические факторы

Водоросли, входя в состав экосистем, как правило связаны с остальными их компонентами множественными связями. Претерпеваемые водорослями прямые и косвенные воздействия, обусловленные жизнедеятельностью дру­гих организмов, относят к биотическим факторам.

Трофические факторы. В большинстве случаев водоросли в экосистемах выступают как продуценты органического вещества. В связи с этим важнейшим фактором, ограничивающим развитие водорослей в конкретной экосистеме, является наличие консументов, существующих за счет поедания водорослей. Например, развитие сообществ с доминированием видов рода Laminaria у Атлантического побережья Канады лимитируется численностью морских ежей, питающихся преимущественно этой водорослью. В тропических водах в зонах коралловых рифов встречаются районы, в которых рыбы полностью выедают зеленые, бурые и красные водоросли с мягкими слоевищами, оставляя несъеденными синезеленые водоросли с жесткими обызвествленными оболочками. Наблюдается нечто подобное влиянию интенсивного выпаса на луговые сообщества высших растений. Брюхоногие моллюски также в основном питаются водорослями. Ползая по дну они поедают микроскопические водоросли и проростки макроскопических видов. При массовом развитии этих моллюсков могут происходить серьезные нарушения в водорослевых сообществах литорали.

Аллелопатические факторы. Влияние водорослей друг на друга нередко обусловлено различными аллелопатическими связями. Бентосные водоросли, например, начинают оказывать взаимное влияние с момента оседаний и прорастания спор. Экспериментально доказано, что зооспо­ры Laminaria ие прорастают в соседстве с фрагментами слоевищ бурой водоросли из рода Ascophylum.

Конкуренция . На развитии отдельных видов водорослей могут сказываться и отношения конкуренции. Так, виды рода Fucales обычно обитают в зоне приливов, подвергаясь периодическому (иногда до двух суток) пересыханию. Ниже, в постоянно затопляемой зоне, как правило располагаются плотные заросли других бурых и красных водорослей. Однако в тех местах, где эти заросли не очень плотные, Fucales произрастают и на большей глубине.

Симбиоз . Особый интерес представляют случаи сожительства водорослей с другими организмами. Чаще всего водоросли используют живые организмы как субстрат. По характеру субстрата, на котором поселяются водоросли обрастаний, среди них выделяют эпифиты, поселяющиеся на растениях, и эпизоиты, живущие на животных. Так, на обызвествленных раковинах моллюсков нередко можно встретить виды родов Cladophora или Oedogonium, в обрастаниях губок обычны некоторые зеленые, синезеленые и диатомовые водоросли. В сообществах обрастаний между растением-хозяином и растением-обрастателем устанавливаются непрочные и кратковременные связи.

Водоросли могут жить также в тканях других организмов - как внеклеточно (в слизи, межклеточниках водорослей, иногда в оболочках мертвых клеток), так и внутриклеточно. Водоросли, живущие в тканях или в клетках других организмов называют эндофитами. Внеклеточные и внутриклеточные эндофиты из числа водорослей образуют довольно сложные симбиозы - эндосимбиозы. Для них характерно наличие более или менее постоянных и прочных связей между партнерами. Эндосимбиоитами могут быть самые разные водоросли - синезеленые, зеленые, бурые, красные и другие, но наиболее многочисленны эндосимбиозы одноклеточных зеленых и желтозелеиых водорослей с одноклеточными животными. Водоросли, участвующие в них, носят название зоохлорелл и зооксантелл.

Желтозеленые и зеленые водоросли образуют эндосимбиозы и с многоклеточными организмами - пресноводными губками, гидрами и пр. Своеобразные эндосимбиозы синезеленых водорослей с простейшими и некоторыми другими организмами получили название синцианозов. Возникающий при этом морфологический комплекс называют цианомом, а синезеленые водоросли в нем - цианеллами. Нередко в слизи одних видов синезеленых могут поселяться другие виды этого отдела. Обычно оии используют уже готовые органические соединения, образующиеся в изобилии при распаде слизи колонии растения-хозяина, и интенсивно размножаются. Иногда их бурное развитие приводит к гибели колонии растения-хозяина.

Среди симбиозов, образуемых водорослями, наибольший интерес представляет их симбиоз с грибами, известный под названием лишайникового симбиоза, в результате которого возникла своеобразная группа растительных организмов, получившая название «лишайники ». Этот симбиоз демонстрирует уникальное биологическое единство, которое привело к появлению принципиально нового организма. Вместе с тем каждый партнер лишайникового симбиоза сохраняет черты той группы организмов, к которой он относится. Лишайники представляют собой единственный доказанный случай возникновения нового организма в результате симбиоза двух.

Антропогенные факторы

Как и всякое другое живое существо, человек как член биоценоза является биотическим фактором для остальных организмов экосистемы, в которой ои находится. Прокладывая каналы и сооружая водохранилища, человек создает новые местообитания для водных организмов, нередко принципиально отличающиеся от водоемов данного региона по гидрологическому и тепловому режиму. В настоящее время уровень продуктивности многих континентальных водоемов часто определяется не столько природными условиями, сколько общественными и экономическими отношениями. Сбросы сточных вод нередко приводят к обеднению видового состава и гибели, водорослей или к массовому развитию отдельных видов. Первое происходит при сбросе в водоем токсических веществ, второе - при обогащении водоема биогенными веществами (особенно соединениями азота и фосфора) в минеральной или органической форме - т. и. антропогенное эвтрофирование водоемов. Во многих случаях стихийное обогащение водоема биогенными веществами происходит в таком масштабе, что водоем как экологическая система оказывается перегруженным ими. Следствием этого является чрезмерное бурное развитие водорослей - «цветение воды». На водоросли, особенно аэрофитные и почвенные, могут оказывать влияние и атмосферные выбросы токсических промышленных отходов. Часто последствия непроизвольного или целенаправленного вмешательства человека в жизнь экосистем имеют необратимый характер.

Лекция 2. Многообразие растений. Водоросли

Систематика растений занимается изучением и описанием видов растений и распределением их по группам на основе сходства строения и родственных связей между ними, созданием классификации.

Таблица 1. Таксономические категории и таксоны на примере картофеля:

Низшие растения, или Водоросли

Общая характеристика. Водоросли – большая сборная группа фотосинтезирующих, преимущественно водных, фотоавтотрофных эукариотических растений. Для большинства водорослей характерно: в основном водная среда обитания, но большое число видов встречается и на суше (на поверхности почвы, влажных камнях, коре деревьев и т.д.).

Большинство водорослей находится в толще воды во взвешенном состоянии или активно плавает (фитопланктон ), некоторые ведут прикрепленный образ жизни (фитобентос ). Зеленые водоросли обитают в прибрежной зоне на небольшой глубине, бурые содержат пигменты, позволяющие им жить на глубине до 50 м, а набор фотосинтетических пигментов красных водорослей позволяет им обитать на глубине100-200 м, а отдельные представители обнаружены на глубине до 500 м.

Тело водорослей может быть одноклеточным, колониальным или многоклеточным. Если это многоклеточный организм, то его тело не дифференцировано на органы и ткани и называется таллом , или слоевище . У сложно организованных водорослей может наблюдаться элементарная дифференцировка тела, имитирующая органы высших растений – появляются ризоиды, стеблевидные и листовидные образования.

Строение клеток. Клетки большинства водорослей имеют клеточную стенку, образованную целлюлозой и пектином (только у примитивных подвижных одноклеточных и колониальных водорослей, у зооспор и гамет клетки ограничены лишь плазмалеммой), клеточная стенка почти всегда покрыта слизью. Протопласт клеток состоит из цитоплазмы, одного или нескольких ядер и хроматофоров (пластид), содержащих хлорофилл и другие пигменты; в хроматофорах имеются особые образования – пиреноиды – белковые тельца, вокруг которых накапливается крахмал, образующийся в процессе фотосинтеза. Вакуоли, как правило, хорошо развиты; иногда (особенно в подвижных клетках) имеются особые сократительные вакуоли; большинство подвижных водорослей имеют жгутики и светочувствительное образование – глазок, или стигму, благодаря которому водоросли обладают фототаксисом (способностью к активному движению всего организма по направлению к свету).

Размножение бесполое и половое, бесполое размножение осуществляется с помощью зооспор (подвижных) или спор (неподвижных). Бесполое размножение также может осуществляться с помощью вегетативного размножения путем фрагментации таллома, деления клеток одноклеточных водорослей, у колониальных водорослей – за счет распада колоний.

Половое размножение происходит путем образования множества специализированных половых клеток – гамет и их слияния (оплодотворения), что представляет собой половой процесс. В результате слияния образуется зигота, которая покрывается толстой защитной оболочкой. После периода покоя (реже сразу же) зигота прорастает в новую особь, образующуюся в основном путем мейотического деления (зиготическая редукция).

Красные водоросли, или багрянки. Одно из подцарств царства Растения. Среди багрянок встречаются как одноклеточные, так и многоклеточные нитчатые и пластинчатые водоросли (рис.). Из 4000 видов только 200 приспособились к жизни в пресных водоемах и на почве, остальные – обитатели морей. Окраска красных водорослей разнообразна, она определяется различным количественным содержанием пигментов: зелёные - хлорофиллы а и d , каротиноиды и фикобиллины: красный (фикоэритрин) и синий (фикоцианин). Причем окраска водорослей различна на разной глубине, на мелководье они желто-зеленые, затем розовые и на глубине более 50 м становятся красными. Максимальная глубина, на которой находили багрянки – 500 м, где они используют сине-фиолетовые длины волн солнечного света. Чем короче длина волны, тем больше ее энергия, поэтому на самую большую глубину проникают световые волны с наиболее короткой длиной волны. Причем водолазам они кажутся черными, настолько эффективно они поглощают весь падающий на них свет, красными они выглядят на поверхности. Пигменты сосредоточены в хроматофорах, имеющих вид зерен или пластинок, пиреноидов нет.

Клеточная стенка – пектиново-целлюлозная, способная к сильному ослизнению, в результате чего у некоторых водорослей весь таллом приобретает слизистую консистенцию. В стенках у многих может откладываться углекислый кальций (СаСО 3) или магний (MgCO 3).

Продуктом ассимиляции является багрянковый крахмал, по строению близкий к гликогену. В отличие от обычного крахмала при окрашивании йодом он приобретает буро-красный цвет.

Багрянки имеют большое практическое значение. Из них получают агар-агар, использующийся в кондитерской и микробиологической промышленности, многие из них являются сырьем для получения клея. Из золы багрянок получают йод и бром. Некоторые красные водоросли используются на корм скоту. В Японии, Китае, на островах Океании и в США багрянки используются в пищу. Порфира считается деликатесом. Красная водоросль хондрус используется для получения каррагенов – особых полисахаридов, подавляющих размножение вируса СПИДа.

Отдел Бурые водоросли. Отдел включает около 1500 видов многоклеточных, преимущественно макроскопических (до 60-100 м) водорослей, ведущих прикрепленный (бентосный ) образ жизни. Чаще всего они встречаются в прибрежных мелководьях всех морей и океанов, иногда вдали от берега (например, в Саргассовом море).

Строение. Талломы бурых водорослей имеют наиболее сложное строение среди водорослей. Одноклеточные и колониальные формы отсутствуют. У высокоорганизованных клетки таллома отчасти дифференцируется, образуя тканеподобные анатомические структуры (например, ситовидные трубки с косыми перегородками). В результате этого происходит образование “стеблевой” и “листовой” частей таллома, выполняющих неоднородные функции. В субстрате водоросли закрепляются с помощью ризоидов.

Клетки бурых водорослей одноядерные с многочисленными хроматофорами, имеющими вид дисков или зерен. Бурая окраска водорослей обусловлена смесью пигментов (хлорофилла, каротиноидов, фукоксантина). Основным запасным веществом является ламинарин (полисахарид с иными, чем у крахмала, связями между остатками глюкозы), откладывающийся в цитоплазме. Клеточные стенки сильно ослизняются. Слизь помогает удерживать воду и тем самым препятствует обезвоживанию, что важно для водорослей приливно-отливной зоны.

Размножение половое и бесполое. Вегетативное размножение осуществляется частями таллома.

Ламинария. Представители рода ламинария известны под названием «морская капуста» (рис.). Они широко распространены в северных морях. Зрелый спорофит ламинарии диплоидное растение длиной от 0,5 до 6 и более метров.


Слоевище ламинарии имеет одну или несколько листоподобных пластинок, располагающихся на простом или разветвленном стеблевидном образовании, прикрепленном к субстрату ризоидами. Стеблевидное образование с ризоидами многолетнее, а пластинка ежегодно отмирает и весной вновь отрастает.

Типичными представителями бурых водорослей является ламинария, макроцистис (его громадное слоевище достигает в длину 50-60 м), фукус, саргассум.

Значение. Будучи автотрофами, водоросли являются основными продуцентами (т. е. производителями) органических веществ в различных водоемах. Кроме того, в процессе фотосинтеза они выделяют кислород, создавая тем самым благоприятные условия для жизни не только водных, но и наземных организмов.

Водоросли играют огромную роль в жизни человека: являются кормом для многих промысловых рыб и других животных, служат добавками в различных питательных смесях, входят в состав комбикормов, некоторые водоросли (например, «морскую капусту») употребляют в пищу. Клетки бурых водорослей поверх целлюлозной клеточной стенки порыты пектином, состоящим из альгиновой кислоты или ее солей, при смешивании с водой (в соотношении 1/300) альгинаты образуют вязкий раствор. Альгинаты используются в пищевой промышленности (для получения пастилы, мармеладов), в парфюмерии (изготовление гелей), в медицине (для изготовления мазей), в химической промышленности (для изготовления клеев, лаков). В текстильной промышленности с их помощью делают невыцветающие и непромокаемые ткани. Морские водоросли используются для получения удобрений, йода, брома. Йод получали раньше исключительно из бурых водорослей. Бурые водоросли могут служить в качестве индикатора местонахождения золота, они способны накапливать его в клетках слоевища.

Отдел Зеленые водоросли. Отдел объединяет около 13000 видов, это самый обширный отдел среди водорослей. Отличительная особенность – чисто зеленый цвет слоевищ, вызванный преобладанием хлорофилла над другими пигментами. Распространены повсеместно. В основном зеленые водоросли обитатели пресных водоемов, но есть и морские виды. Некоторые обитают на суше. Есть виды, вступающие в симбиотические отношения с некоторыми животными (губками, кишечнополостными, оболочниками) и грибами.

Строение . Зеленые водоросли представлены одноклеточными, колониальными и многоклеточными формами. Клетки имеют плотную целлюлозно-пектиновую оболочку, бывают одноядерные или многоядерные. В цитоплазме находятся хроматофоры с пигментами (в основном хлорофилл a и b,). Кроме хлорофилла, в клетках содержатся каротиноиды, ксантофиллы и другие пигменты. Хлоропласты сходны с пластидами высших растений. Основным запасным веществом, накапливающимся в хлоропластах, является крахмал .

Зеленые водоросли считаются предками наземных растений: они имеют одинаковые наборы фотосинтетических пигментов, оболочка содержит не только целлюлозу, но и пектин, запасное вещество – крахмал, накапливаются запасные питательные вещества не в цитоплазме (как у других водорослей), а в пластидах.


Род Хламидомонада. В переводе – единичный организм, покрытый древнегреческой одеждой – хламидой. Одноклеточные водоросли, обитающие преимущественно в мелких водоемах, загрязненных органическими веществами (рис. 60). Клетка хламидомонады имеет округлую или овальную форму, передний конец заострен в виде носика. На нем располагаются два одинаковой величины жгутика, с помощью которых хламидомонада передвигается в воде. Оболочка клетки пектиново-целлюлозная. В центре клетки располагается чашевидный хроматофор с крупным пиреноидом. В углублении хроматофора располагается ядро. На переднем конце клетки находятся стигма и пульсирующие вакуоли.

Размножается хламидомонада как бесполым, так и половым путем. В жизненном цикле преобладает гаплоидная фаза. При бесполом размножении хламидомонада теряет жгутики, содержимое клетки дважды делится митотически, и под оболочкой материнской клетки образуются четыре дочерние. Каждая из них выделяет оболочку и образует жгутики, превращаясь в зооспоры.

Под воздействием ферментов оболочка материнской клетки разрушается, и они выходят наружу, растут до размеров материнской и тоже переходят к бесполому размножению (рис. 61).

Половой процесс у многих видов хламидомонады происходит по типу изогамии. Содержимое клетки делится, образуя от 8 до 32 гамет, которые напоминают зооспоры, но имеют более мелкие размеры. Клетки с разным половым знаком сливаются. Образовавшаяся зигота покрывается толстой оболочкой и впадает в период покоя. При наступлении благоприятных условий содержимое зигоспоры делится мейотически, и образуются четыре гаплоидные клетки, каждая из которых становится новой хламидомонадой.

У некоторых видов половой процесс осуществляется по типу гетерогамии (обе гаметы подвижны, но женская крупнее мужской) или по типу оогамии (женская гамета неподвижна).

Род Хлорелла. Одноклеточная водоросль, обитающая в пресных и соленых водоемах, на влажной почве, скалах (рис. 62). Клетки имеют вид зеленых шариков диаметром до 15 мкм. Жгутиков, глазков и сократительных вакуолей не имеет. В клетках имеется чашевидный хроматофор с пиреноидом или без него и мелкое ядро. Хлорелла гораздо более эффективно использует солнечную энергию для фотосинтеза. Если наземные растения используют около 1% солнечной энергии, то хлорелла – 10%. Половой процесс для этой водоросли не известен. Бесполое размножение происходит путем митотического деления содержимого материнской клетки дважды или трижды. В результате деления формируется четыре или восемь неподвижные споры (апланоспоры ). После разрыва материнской оболочки клетки выходят наружу, увеличиваются в размерах и делятся вновь.

Хлорелла интересна тем, что ее клетки содержат большое количество питательных веществ – 50 полноценных белков, жирные масла, углеводы, витамины А, В, С и К и даже антибиотики (причем витамина С в ней в 2 раза больше, чем в соке лимона). Она размножается так интенсивно, что за сутки происходит тысячекратное увеличение числа ее клеток.

Хлорелла стала первой водорослью, которую человек стал выращивать в культуре. Она использовалась в качестве экспериментального объекта для изучения некоторых этапов фотосинтеза. В некоторых странах (США, Япония, Израиль) созданы опытные установки для выращивания хлореллы и изучалась возможность использования хлореллы как источника питания для человека. Японцы научились перерабатывать хлореллу в белый порошок, богатый белками и витаминами. Его можно добавлять в муку для выпечки хлебобулочных изделий. Кроме того, хлорелла используется как источник дешевых кормов для скота и при биологической очистке сточных вод.

Класс Улотриксовые. Многоклеточные водоросли, слоевище которых нитевидное или пластинчатое. Наиболее известные представители относятся к роду Улотрикс и роду Ульва. Неветвящиеся нити улотрикса, прикрепляясь к подводным предметам – камням, сваям, корягам и т.д., образуют зеленые дерновинки. Все клетки (за исключением вытянутой в длину бесцветной ризоидальной клетки, с помощью которой происходит прикрепление водоросли) имеют сходное строение. В центре клетки находится ядро и хроматофор, имеющий форму незамкнутого кольца. В хроматофоре находится несколько пиреноидов. Рост нити в длину происходит за счет деления клеток в поперечном направлении. Произрастает в быстротекущих реках, ведет прикрепленный образ жизни (рис. 65).

При благоприятных условиях улотрикс размножается зооспорами, имеющими по четыре жгутика. Они образуются в четном количестве (2, 4, 8 и более). Зооспоры бывают разных размеров – крупные и мелкие. Способность к активному перемещению зооспор способствует расселению улотрикса. Половой процесс происходит по типу изогамии. Отдельные клетки нити превращаются в гаметангии, в которых образуются двужгутиковые гаметы. При слиянии гамет образуется четырехжгутиковая зигота. Затем она отбрасывает жгутики и переходит в состояние покоя.

В дальнейшем зигота редукционно делится, давая начало четырем клеткам, каждая из которых образуется новую нить.

Важная эволюционная линия связана с переходом от нитчатого слоевища к пластинчатому. Именно такая форма слоевища у представителей рода Ульва (морской салат). Внешне ульва напоминает тонкий зеленый лист целлофана, ее слоевище до 150 см состоит из двух слоев клеток. Для ульвы характерно чередование поколений, причем диплоидный спорофит и гаплоидные гаметофиты внешне не отличаются. Такое чередование поколений называется изоморфным .

Род Спирогира. Зеленые нитчатые водоросли длиной до 8-10 см (рис. 63). Многочисленные виды спирогир обитают в пресных водоемах, в стоячей воде. Скопления нитей спирогиры образуют тину. Нити неветвящиеся, образованные одним рядом цилиндрических клеток. Жгутиковые стадии отсутствуют.

В центре клеток находится крупное ядро. Оно окружено цитоплазмой, расходящейся в виде тяжей от центра клетки к периферии. Здесь они соединяются с постенным слоем цитоплазмы. Тяжи пронизывают крупную вакуоль. В клетках находятся лентовидные, закрученные в виде спирали хроматофоры. Они располагаются постенно с внутренней стороны оболочки. У разных видов спирогиры количество хроматофоров колеблется от 1 до 16. В хроматофорах в большом количестве располагаются крупные бесцветные пиреноиды. Снаружи водоросль окружена слизистым чехлом.


Рис. . Лестничная конъюгация спирогиры
Рост водоросли в длину осуществляется путем поперечного деления клеток. Размножается спирогира бесполым и половым способом. Бесполое размножение осуществляется частями нитей при их случайном разрыве.

Половой процесс осуществляется путем конъюгации (рис. 64). Конъюгация может быть лестничной и боковой. При лестничной конъюгации две нити располагаются параллельно друг другу. У рядом расположенных клеток образуют куполообразные выросты, растущие навстречу друг другу.

В месте соприкосновения перегородки, разделяющие клетки, растворяются, и образуется канал, связывающий обе клетки. Содержимое одной клетки (мужской) округляется и перетекает по трубке в другую (женскую), и их содержимое (в первую очередь ядра) сливается. При боковой конъюгации оплодотворение происходит в пределах одной нити. При этом наблюдается слияние протопластов двух рядом расположенных клеток.

Зигота, образовавшаяся в результате оплодотворения, окружается толстой клеточной стенкой и впадает в период покоя. Весной зигота редукционно делится и образует четыре гаплоидных ядра. Три ядра дегенерируют, а четвертое делится митотически и дает начало новой гаплоидной нити. Таким образом, спирогира проходит жизненный цикл в гаплоидной фазе, диплоидна у нее только зигота.