Дана функция распределения непрерывной случайной величины x. Закон распределения дискретной случайной величины

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

………………………………………………………

Аn - случайная величина Х приняла значение An.

Очевидно, что сумма событий A1 A2, . , An является достоверным событием, так как хотя бы одно из значений x1, x2, xn случайная величина обязательно принимает.

Поэтому P (A1 È А2 È . È Аn) = 1.

Кроме того, события А1, А2, ., An - несовместны, т. к. случайная величина при однократном осуществлении опыта может принять только одно из значений х1, х2, ., xn. По теореме сложения для несовместных событий получаем

Р(А1)+Р(А2)+ .+Р(Аn)=1,

т. е. p1+p2+ . +pn = 1, или, короче,

Следовательно, сумма всех чисел, расположенных во второй стро­ке Таблицы 1, дающей закон распределения случайной величины X, должна быть равна единице.

ПРИМЕР 1 . Пусть случайная величина Х - число очков, выпавших при подбрасывании игральной кости. Найти закон распределения (в виде таблицы).

Случайная величина Х принимает значения

x1=1, х2=2, … , x6=6

с вероятностями

р1= р2 = … = р6 =

Закон распределения задается таблицей:

Таблица 2

ПРИМЕР 2. Биноминальное распределение. Рассмотрим случайную величину Х - число появлений события А в серии из независимых опытов, в каждом из которых А насту­пает с вероятностью р.

Случайная величина Х может, очевидно, принимать одно из следующих значений:

0, 1, 2, ., k, ., n.

Вероятность события, состоящего в том, что случайная величина Х примет значение, равное k, определяется формулой Бернулли:

Рn(k)= где q=1- р.

Такое распределение случайной величины называется биномиальным распределением или распределением Бернулли. Распределение Бернулли полностью задается двумя параметрами: числом n всех опытов и вероятностью р, с которой событие происходит в каждом отдельном опыте.

Условие для биномиального распределения принимает вид:

Для доказательства справедливости этого равенства достаточно в тождестве

(q+рх)n=

положить x=1.

ПРИМЕР 3. Распределение Пуассона. Так называется распределение вероятностей вида:

Р(k)=.

Оно определяется одним единственным (положительным) параметром а. Если ξ – случайная величина, имеющая распределение Пуассона, то соответствующий параметр а - есть среднее значение этой случайной величины:

а=Мξ=, где М – математическое ожидание.

Случайная величина равна:

ПРИМЕР 4. Показательное распределение.

Если время является случайной величиной, обозначим его τ, таково, что

где 0<λ=const, t ³ 0, причем, если t=0, то P(t)=0.

Среднее значение случайной величины t есть:

Плотность распределения имеет вид:

4) Нормальное распределение

Пусть - независимые, одинаково распределенные случайные величины и пусть Если слагаемые достаточно малы, а число n достаточно велико, - если при n à ∞ математическое ожидание случайной величины Мξ и дисперсия Dξ равная Dξ=M(ξ–Мξ)2, таковы, что Мξ~а, Dξ~σ2, то

- нормальное или гауссово распределение

.

5) Геометрическое распределение. Обозначим ξ число испытаний, предшествующих наступлению первого "успеха". Если считать, что каждое испытание длится единицу времени, то можно считать ξ временем ожидания до первого "успеха". Распределение имеет вид:

Р(k)=p(1-p)k, (k=0, 1, 2) p>0

6) Гипергеометрическое распределение.

Имеется N – объектов среди которых n - "особых объектов". Среди всех объектов случайным образом выбирается k-объектов. Найти вероятность того, что среди отобранных объектов находится равно r - "особых объектов". Распределение имеет вид:

7) Распределение Паскаля.

Пусть x - общее число "неудач", предшествующих поступлению r-го "успеха". Распределение имеет вид:

Функция распределения имеет вид:

Равновероятностное распределение подразумевает, что случайная величина x может принимать любые значения на отрезке с одинаковой вероятностью. Плотность распределения при этом вычисляется как

Графики плотности распределения и функция распределения представлены ниже.

Перед тем, как объяснить понятие «белый шум», необходимо дать ряд определений.

Случайной функцией называют функцию неслучайного аргумента t, которая при каждом фиксированном значении аргумента, является случайной величиной. Например, если U – случайная величина, то функция X(t)=t2U – случайная.

Сечением случайной функции называют случайную величину, соответствующую фиксированному значению аргумента случайной функции. Таким образом, случайную функцию можно рассматривать как совокупность случайных величин {X(t)}, зависящих от параметра t.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно:

Проверим, выполняется ли требование равномерной ограниченности дисперсии. Напишем закон распределения :

Найдём математическое ожидание
:

Найдём дисперсию
:

Эта функция возрастает, следовательно, чтобы вычислить константу, ограничивающую дисперсию, можно вычислить предел:

Таким образом, дисперсии заданных случайных величин неограниченны, что и требовалось доказать.

Б) Из формулировки теоремы Чебышева следует, что требование равномерной ограниченности дисперсий является достаточным, но не необходимым условием, поэтому нельзя утверждать, что к данной последовательности эту теорему применить нельзя.

Последовательность независимых случайных величин Х 1 , Х 2 , …, Х n , … задана законом распределения

D(X n)=M(X n 2)- 2 ,

учитывай, что M(X n)=0, найдем (выкладки предоставляются выполнить читателю)

Временно предположим, что n изменяется непрерывно (чтобы подчеркнуть это допущение, обозначим n через х), и исследуем на экстремум функцию φ(х)=х 2 /2 х-1 .

Приравняв первую производную этой функции к нулю, найдем критические точки х 1 =0 и х 2 =ln 2.

Отбросим первую точку как не представляющую интереса (n не принимает значения, равного нулю); легко видеть, что в точек х 2 =2/ln 2 функция φ(х) имеет максимум. Учитывая, что 2/ln 2 ≈ 2.9 и что N – целое положительное число, вычислим дисперсию D(X n)= (n 2 /2 n -1)α 2 для ближайших к числу 2.9 (слева и справа) целых чисел, т.е. для n=2 и n=3.

При n=2 дисперсия D(X 2)=2α 2 , при n=3 дисперсия D(Х 3)=9/4α 2 . Очевидно,

(9/4)α 2 > 2α 2 .

Таким образом, наибольшая возможная дисперсия равна (9/4)α 2 , т.е. дисперсии случайных величин Хn равномерно ограничены числом (9/4)α 2 .

Последовательность независимых случайных величин X 1 , X 2 , …, X n , … задана законом распределения

Применима ли к заданной последовательности теорема Чебышева?

Замечание. Поскольку случайные величины Х, одинаково распределены и независимы, то читатель, знакомый с теоремой Хинчина, может ограничиться вычислением лишь математического ожидания и убедиться, что оно кончено.

Поскольку случайные величины Х n независимы, то они подавно и попарно независимы, т.е. первое требование теоремы Чебышева выполняется.

Легко найти, что M(X n)=0, т.е.первое требование конечности математических ожиданий выполняется.

Остается проверить выполнимость требования равномерной ограниченности дисперсий. По формуле

D(X n)=M(X n 2)- 2 ,

учитывай, что M(X n)=0, найдем

Таким образом, наибольшая возможная дисперсия равна 2, т.е. дисперсии случайных величин Х n равномерно ограничены числом 2.

Итак, все требования теоремы Чебышева выполняются, следовательно, к рассматриваемой последовательности эта теорема применима.

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (0, 1/3).

Случайная величина Х задана на всей оси Ох функцией распределена F(x)=1/2+(arctg x)/π. Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (0, 1).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

Р(0< Х <1) = F(1)-F(0) = x =1 - x =0 = 1/4

Случайная величина Х функцией распределения

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (-1, 1).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

Р(-1< Х <1) = F(1)-F(-1) = x =-1 – x =1 = 1/3.

Функция распределения непрерывной случайной величины Х (времени безотказной работы некоторого устройства) равна F(х)=1-е -х/ T (х≥0). Найти вероятность безотказной работы устройства за время х≥Т.

Вероятность того, что Х примет значение, заключенное в интервале x≥T, равна приращению функции распределения на этом интервале: P(0

P(x≥T) = 1 - P(T

Случайная величина Х задана функцией распределения

Найти вероятность того, что в результате испытания Х примет значение: а) меньшее 0.2; б) меньшее трех; в) не меньшее трех; г) не меньшее пяти.

а) Так как при х≤2 функция F(х)=0, то F(0, 2)=0, т.е. P(х < 0, 2)=0;

б) Р(Х < 3) = F(3) = x =3 = 1.5-1 = 0.5;

в) события Х≥3 и Х<3 противоположны, поэтому Р(Х≥3)+Р(Х<3)=1. Отсюда, учитывая, что Р(Х<3)=0.5 [см. п. б.], получим Р(Х≥3) = 1-0.5 = 0.5;

г) сумма вероятностей противоположных событий равна единице, поэтому Р(Х≥5)+Р(Х<5)=1. Отсюда, используя условие, в силу которого при х>4 функция F(x)=1, получим Р(Х≥5) = 1-Р(Х<5) = 1-F(5) = 1-1 = 0.

Случайная величина Х задана функцией распределния

Найти вероятность того, что в результате четырех независимых испытаний величина Х ровно три раза примет значение, принадлежащее интервалу (0.25, 0.75).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

P(0.25< X <0.75) = F(0.75)-F(0.25) = 0.5

Следовательно, , или Отсюда , или.

Случайная величина X задана на всей оси Ox функцией распределения . Найти возможное значения , удовлетворяющее условию: с вероятностью случайная X в результате испытания примет значение большее

Решение. События и - противоложные, поэтому . Следовательно, . Так как , то .

По определению функции распределения, .

Следовательно, , или . Отсюда , или.

Дискретная случайная величина X задана законом распределения

Итак, искомая функция распределения имеет вид

Дискретная случайная величина X задана законом распределения

Найти функцию распределения и начертить ее график.

Дана функция распределения непрерывной случайной величины X

Найти плотность распределения f(x).

Плотность распределения равна первой производной от функции распределения:

При x=0 производная не существует.

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Плотность распределения непрерывной случайной величины Х в интервале (-π/2, π/2) равна f(x)=(2/π)*cos2x ; вне этого интервала f(x)=0. Найти вероятность того, что в трех независимых испытаниях Х примет ровно два раза значение, заключенное в интервале (0, π/4).

Воспользуемся формулой Р(a

Р(0

Ответ: π+24π.

fx=0, при x≤0cosx, при 0

Используем формулу

Если х ≤0, то f(x)=0, следовательно,

F(x)=-∞00dx=0.

Если 0

F(x)=-∞00dx+0xcosxdx=sinx.

Если x≥ π2 , то

F(x)=-∞00dx+0π2cosxdx+π2x0dx=sinx|0π2=1.

Итак, искомая функция распределения

Fx=0, при x≤0sinx, при 0 π2.

Задана плотность распределения непрерывной случайной величины Х:

Fx=0, при x≤0sinx, при 0 π2.

Найти функцию распределения F(x).

Используем формулу

Плотность распределения непрерывной случайной величины Х задана на всей оси Ох равеством . Найти постоянный параметр С.

.

. (*)

.

Таким образом,

Плотность распределения непрерывной случайной величины задана на всей оси равенством Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию . Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

.

Затем вычислим несобственный интеграл:

Таким образом,

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины X в интервале равна ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины Х задана в интервале равенством ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию , но так как f(x) вне интервала равна 0 достаточно, чтобы она удовлетворяла: Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Случайная величина X задана плотностью распределения ƒ(x) = 2x в интервале (0,1); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 1, ƒ(x) = 2x, получим

Ответ: 2/3.

Случайная величина X задана плотностью распределения ƒ(x) = (1/2)x в интервале (0;2); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 2, ƒ(x) = (1/2)x, получим

М (Х) = = 4/3

Ответ: 4/3.

Случайная величина X в интервале (–с, с) задана плотностью распределения

ƒ(x) = ; вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = –с, b = c, ƒ(x) = , получим

Учитывая, что подынтегральная функция нечетная и пределы интегрирования симметричны относительно начала координат, заключаем, что интеграл равен нулю. Следовательно, М(Х) = 0.

Этот результат можно получить сразу, если принять во внимание, что кривая распределения симметрична относительно прямой х = 0.

Случайная величина Х в интервале (2, 4) задана плотностью распределения f(x)=

. Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=3, поэтому и .

Случайная величина Х в интервале (3, 5) задана плотностью распределения f(x)=; вне этого интервала f(x)=0. Найти моду, математическое ожидание и медиану величины Х.

Решение. Представим плотность распределения в виде . Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=4, поэтому и .

Случайная величина Х в интервале (-1, 1) задана плотностью распределения ; вне этого интервала f(x)=0. Найти: а) моду; б) медиану Х.